基于参数优化多核支持向量机的光伏功率预测算法

贺亦琛, 师长立, 郭小强, 贺伟, 韩涛

太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 394-404.

PDF(1169 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1169 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 394-404. DOI: 10.19912/j.0254-0096.tynxb.2023-0826

基于参数优化多核支持向量机的光伏功率预测算法

  • 贺亦琛1,2, 师长立2, 郭小强1, 贺伟3, 韩涛3
作者信息 +

PHOTOVOLTAIC POWER PREDICTION ALGORITHM BASED ON PARAMETER OPTIMAZATION OF MULTI-KERNEL SVM

  • He Yichen1,2, Shi Changli2, Guo Xiaoqiang1, He Wei3, Han Tao3
Author information +
文章历史 +

摘要

准确的光伏功率预测对电力系统的稳定运行具有重大意义。针对现有预测算法在处理多维输入天气变量时存在的运算时间过长和特征提取能力较差的问题,提出一种基于参数优化的多核函数支持向量机的预测算法。首先,该新型算法对数据进行预处理,灰色关联度提取与预测日相似度高的历史日以提升预测精度,主成分分析(PCA)对输入数据进行降维,从而提高光伏功率预测的速度。其次,针对单核支持向量机对多维数据特征提取能力相对较差的问题,基于线性核函数和径向基核函数建立多核支持向量机预测模型,根据每个核函数支持向量机的预测误差计算不同的权重,从而增强对输入数据特征提取能力并提高预测精度。采用灰狼优化(GWO)算法确定不同核函数支持向量机的参数以提高预测精度。最后,通过北京某光伏电站的历史数据集验证了该算法的预测效果。实例分析表明,与传统预测算法相比,预测精度和速度都有显著提高。

Abstract

Accurate photovoltaic power prediction is of great significance to the stable operation of power systems. Aiming at the problems of long operation time and poor feature extraction ability in existing forecasting algorithms when dealing with multi-dimensional input weather variables, this paper proposes a forecasting algorithm based on multi-kernel function support vector machine with parameter optimization. First of all, the new algorithm preprocesses the data, gray correlation degree is used to extract historical days with high similarity to the forecasted day to improve the forecasting accuracy, and principal component analysis (PCA) reduces the dimensionality of the input data to improve the accuracy of photovoltaic power forecasting. Secondly, in view of the relatively poor ability of single-kernel support vector machine to extract multi-dimensional data features, a multi-kernel support vector machine model is established based on linear kernel function and radial basis kernel function to predict photovoltaic power generation. Different weights are calculated according to the prediction error of each kernel function support vector machine to enhance the feature extraction ability of the input data and improve the prediction accuracy. The gray wolf optimization (GWO) algorithm is used to determine the parameters of the support vector machine with different kernel functions to improve the prediction accuracy. Finally, the prediction effect of the algorithm is verified by the historical dataset of a photovoltaic power station in Beijing. The example analysis shows that compared with the traditional forecasting algorithm, the forecasting accuracy and speed are significantly improved.

关键词

光伏 / 预测 / 主成分分析 / 多核支持向量机 / 灰狼优化算法

Key words

photovoltaic / prediction / principal component analysis / multi-kernel support vector machine / gray wolf optimization algorithm

引用本文

导出引用
贺亦琛, 师长立, 郭小强, 贺伟, 韩涛. 基于参数优化多核支持向量机的光伏功率预测算法[J]. 太阳能学报. 2024, 45(9): 394-404 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0826
He Yichen, Shi Changli, Guo Xiaoqiang, He Wei, Han Tao. PHOTOVOLTAIC POWER PREDICTION ALGORITHM BASED ON PARAMETER OPTIMAZATION OF MULTI-KERNEL SVM[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 394-404 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0826
中图分类号: TM615   

参考文献

[1] AHMED R, SREERAM V, MISHRA Y, et al.A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization[J]. Renewable and sustainable energy reviews, 2020, 124: 109792.
[2] DAS U K, TEY K S, SEYEDMAHMOUDIAN M, et al.Forecasting of photovoltaic power generation and model optimization: a review[J]. Renewable and sustainable energy reviews, 2018, 81: 912-928.
[3] 赖昌伟, 黎静华, 陈博, 等. 光伏发电出力预测技术研究综述[J]. 电工技术学报, 2019, 34(6): 1201-1217.
LAI C W, LI J H, CHEN B, et al.Review of photovoltaic power output prediction technology[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1201-1217.
[4] 马原, 张雪敏, 甄钊, 等. 基于修正晴空模型的超短期光伏功率预测方法[J]. 电力系统自动化, 2021, 45(11): 44-51.
MA Y, ZHANG X M, ZHEN Z, et al.Ultra-short-term photovoltaic power prediction method based on modified clear-sky model[J]. Automation of electric power systems, 2021, 45(11): 44-51.
[5] WANG H Z, LEI Z X, ZHANG X, et al.A review of deep learning for renewable energy forecasting[J]. Energy conversion and management, 2019, 198: 111799.
[6] CHEN B, LI J H.Combined probabilistic forecasting method for photovoltaic power using an improved Markov chain[J]. IET generation, transmission & distribution, 2019, 13(19): 4364-4373.
[7] 谭津, 邓长虹, 杨威, 等. 微电网光伏发电的Adaboost天气聚类超短期预测方法[J]. 电力系统自动化, 2017, 41(21): 33-39.
TAN J, DENG C H, YANG W, et al.Ultra-short-term photovoltaic power forecasting in microgrid based on Adaboost clustering[J]. Automation of electric power systems, 2017, 41(21): 33-39.
[8] 孙荣富, 王隆扬, 王玉林, 等. 基于数字孪生的光伏发电功率超短期预测[J]. 电网技术, 2021, 45(4): 1258-1264.
SUN R F, WANG L Y, WANG Y L, et al.Ultra-short-term prediction of photovoltaic power generation based on digital twins[J]. Power system technology, 2021, 45(4): 1258-1264.
[9] AL-DAHIDI S, AYADI O, ADEEB J, et al.Extreme learning machines for solar photovoltaic power predictions[J]. Energies, 2018, 11(10): 2725.
[10] ZHOU Y, ZHOU N R, GONG L H, et al.Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine[J]. Energy, 2020, 204: 117894.
[11] WANG J D, RAN R, SONG Z L, et al.Short-term photovoltaic power generation forecasting based on environmental factors and GA-SVM[J]. Journal of electrical engineering and technology, 2017, 12(1): 64-71.
[12] VANDEVENTER W, JAMEI E, THIRUNAVUKKARASU G S, et al.Short-term PV power forecasting using hybrid GASVM technique[J]. Renewable energy, 2019, 140: 367-379.
[13] ESEYE A T, ZHANG J H, ZHENG D H.Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and meteorological information[J]. Renewable energy, 2018, 118: 357-367.
[14] PAN M Z, LI C, GAO R, et al.Photovoltaic power forecasting based on a support vector machine with improved ant colony optimization[J]. Journal of cleaner production, 2020, 277: 123948.
[15] 徐一伦, 张彬桥, 黄婧, 等. 考虑天气类型和相似日的IWPA-LSSVM光伏发电功率预测[J]. 中国电力, 2023, 56(2): 143-149.
XU Y L, ZHANG B Q, HUANG J, et al.Forecast of photovoltaic power based on IWPA-LSSVM considering weather types and similar days[J]. Electric power, 2023, 56(2): 143-149.
[16] 曾亮, 雷舒敏, 王珊珊, 等. 基于OVMD-SSA-DELM-GM模型的超短期风电功率预测方法[J]. 电网技术, 2021, 45(12): 4701-4712.
ZENG L, LEI S M, WANG S S, et al.Ultra-short-term wind power prediction based on OVMD-SSA-DELM-GM model[J]. Power system technology, 2021, 45(12): 4701-4712.
[17] WANG Y, HU Q H, SRINIVASAN D, et al.Wind power curve modeling and wind power forecasting with inconsistent data[J]. IEEE transactions on sustainable energy, 2019, 10(1): 16-25.
[18] AKHTER M N, MEKHILEF S, MOKHLIS H, et al.Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques[J]. IET renewable power generation, 2019, 13(7): 1009-1023.
[19] 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaris sinica, 2022, 43(12): 88-97.
[20] 朱永强, 田军. 最小二乘支持向量机在光伏功率预测中的应用[J]. 电网技术, 2011, 35(7): 54-59.
ZHU Y Q, TIAN J.Application of least square support vector machine in photovoltaic power forecasting[J]. Power system technology, 2011, 35(7): 54-59.
[21] 张姗, 冬雷, 纪德洋, 等. 基于NWP相似性分析的超短期光伏发电功率预测[J]. 太阳能学报, 2022, 43(4): 142-147.
ZHANG S, DONG L, JI D Y, et al.Power forecasting of ultra-short-term photovoltaic station based on NWP similarity analysis[J]. Acta energiae solaris sinica, 2022, 43(4): 142-147.
[22] 时珉, 许可, 王珏, 等. 基于灰色关联分析和GeoMAN模型的光伏发电功率短期预测[J]. 电工技术学报, 2021, 36(11): 2298-2305.
SHI M, XU K, WANG J, et al.Short-term photovoltaic power forecast based on grey relational analysis and GeoMAN model[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2298-2305.
[23] 李烁, 陈新度, 尹玲, 等. 考虑气象变化的光伏发电模型评估及研究[J]. 太阳能学报, 2022, 43(6): 79-84.
LI S, CHEN X D, YIN L, et al.Evaluation and research of photovoltaic power generation model considering climate change[J]. Acta energiae solaris sinica, 2022, 43(6): 79-84.
[24] 王依宁, 解大, 王西田, 等. 基于PCA-LSTM模型的风电机网相互作用预测[J]. 中国电机工程学报, 2019, 39(14): 4070-4081.
WANG Y N, XIE D, WANG X T, et al.Prediction of interaction between grid and wind farms based on PCA-LSTM model[J]. Proceedings of the CSEE, 2019, 39(14): 4070-4081.
[25] LIU D, SUN K.Random forest solar power forecast based on classification optimization[J]. Energy, 2019, 187: 115940.
[26] 张雲钦, 程起泽, 蒋文杰, 等. 基于EMD-PCA-LSTM的光伏功率预测模型[J]. 太阳能学报, 2021, 42(9): 62-69.
ZHANG Y Q, CHENG Q Z, JIANG W J, et al.Photovoltaic power prediction model based on EMD-PCA-LSTM[J]. Acta energiae solaris sinica, 2021, 42(9): 62-69.
[27] HUANG C, BENSOUSSAN A, EDESESS M, et al.Improvement in artificial neural network-based estimation of grid connected photovoltaic power output[J]. Renewable energy, 2016, 97: 838-848.
[28] ESEYE A T, LEHTONEN M.Short-term forecasting of heat demand of buildings for efficient and optimal energy management based on integrated machine learning models[J]. IEEE transactions on industrial informatics, 2020, 16(12): 7743-7755.
[29] ZHANG S Q, ZHANG N J, ZHANG Z Q, et al.Electric power load forecasting method based on a support vector machine optimized by the improved seagull optimization algorithm[J]. Energies, 2022, 15(23): 9197.
[30] 李春茂, 周妺末, 刘亚婕, 等. 基于邻域粗糙集与多核支持向量机的变压器多级故障诊断[J]. 高电压技术, 2018, 44(11): 3474-3482.
LI C M, ZHOU M M, LIU Y J, et al.Multi-level fault diagnosis of transformer based on neighborhood rough set and multiple kernel support vector machine[J]. High voltage engineering, 2018, 44(11): 3474-3482.
[31] 吴倩红, 高军, 侯广松, 等. 实现影响因素多源异构融合的短期负荷预测支持向量机算法[J]. 电力系统自动化, 2016, 40(15): 67-72, 92.
WU Q H, GAO J, HOU G S, et al.Short-term load forecasting support vector machine algorithm based on multi-source heterogeneous fusion of load factors[J]. Automation of electric power systems, 2016, 40(15): 67-72, 92.
[32] ZENDEHBOUDI A, BASEER M A, SAIDUR R.Application of support vector machine models for forecasting solar and wind energy resources: a review[J]. Journal of cleaner production, 2018, 199: 272-285.
[33] SEYEDALI M, SEYED M M, ANDREW L.Grey wolf optimizer[J]. Advances in engineering software, 2014, 69: 46-61.
[34] 左剑, 谢平平, 李银红, 等. 基于智能优化算法的互联电网负荷频率控制器设计及其控制性能分析[J]. 电工技术学报, 2018, 33(3): 478-489.
ZUO J, XIE P P, LI Y H, et al.Intelligent optimization algorithm based load frequency controller design and its control performance assessment in interconnected power grids[J]. Transactions of China Electrotechnical Society, 2018, 33(3): 478-489.
[35] ALQUTHAMI T, MAGZOUB M A, OSMAN A M.A day ahead prediction of solar PV power output using ensemble neural network[C]//2021 22nd International Middle East Power Systems Conference (MEPCON). Assiut, Egypt, 2021: 20-25.
[36] 刘大贵, 王维庆, 张慧娥, 等. 马尔科夫修正的组合模型在新疆风电中长期可用电量预测中的应用[J]. 电网技术, 2020, 44(9): 3290-3296.
LIU D G, WANG W Q, ZHANG H E, et al.Application of Markov modified combination model mid-long term available quantity of electricity forecasting in Xinjiang wind power[J]. Power system technology, 2020, 44(9): 3290-3296.

基金

国家重点研发计划(2021YFB2601603); 中国长江三峡集团有限公司科研项目(202103521)

PDF(1169 KB)

Accesses

Citation

Detail

段落导航
相关文章

/