考虑风光融合的多稳态合成氨经济优化研究

苏文华, 文丽梅, 张晓梦, 王博, 陶鑫, 黄超

太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 210-218.

PDF(1286 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1286 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (9) : 210-218. DOI: 10.19912/j.0254-0096.tynxb.2023-0828

考虑风光融合的多稳态合成氨经济优化研究

  • 苏文华1, 文丽梅2, 张晓梦2, 王博1, 陶鑫1, 黄超3
作者信息 +

ECONOMIC OPTIMIZATION OF MULTI-STABLE AMMONIA SYNTHESIS CONSIDERING SOLAR-WIND FUSION

  • Su Wenhua1, Wen Limei2, Zhang Xiaomeng2, Wang Bo1, Tao Xin1, Huang Chao3
Author information +
文章历史 +

摘要

为研究多稳态合成氨工艺经济性,结合某地区特定风光资源条件和装置规模,对合成氨负荷动态调度生产过程进行模拟。当氢气不足时,为防止对合成氨生产造成影响,采用买电制氢的方式弥补对氢气的需求,并分析买电的限度对整个调度过程的影响。通过多稳态合成氨与稳态制氨的经济性对比分析发现前者经济性更高;与内蒙古某稳态制绿氨项目进行对比,发现该文对绿氨项目的优化是切实有效的。

Abstract

In order to study the economy of multi-stable ammonia synthesis process, this paper simulated the dynamic scheduling process of ammonia synthesis load based on the specific landscape resource conditions and plant scale in a certain area. When hydrogen is insufficient, in order to prevent the impact on the production of synthetic ammonia, the way of hydrogen production is used to make up the demand for hydrogen, and the influence of the limit of electricity purchase on the whole scheduling process is analyzed. Through the economic comparison between the multi-stable ammonia synthesis and the steady-state ammonia production, the multi-stable ammonia synthesis technology is more economical, and compared with a steady-state green ammonia production project in Inner Mongolia, it is found that the optimization of the green ammonia project in this paper is practical and effective.

关键词

绿氨 / 新能源发电 / 经济优化 / Homer Pro / 风光互补 / 绿氢

Key words

green ammonia / new energy power generation / economic optimization / Homer Pro / wind and solar complementarity / green hydrogen

引用本文

导出引用
苏文华, 文丽梅, 张晓梦, 王博, 陶鑫, 黄超. 考虑风光融合的多稳态合成氨经济优化研究[J]. 太阳能学报. 2024, 45(9): 210-218 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0828
Su Wenhua, Wen Limei, Zhang Xiaomeng, Wang Bo, Tao Xin, Huang Chao. ECONOMIC OPTIMIZATION OF MULTI-STABLE AMMONIA SYNTHESIS CONSIDERING SOLAR-WIND FUSION[J]. Acta Energiae Solaris Sinica. 2024, 45(9): 210-218 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0828
中图分类号: F407.61   

参考文献

[1] 吉旭, 周步祥, 贺革, 等. 大规模可再生能源电解水制氢合成氨关键技术与应用研究进展[J]. 工程科学与技术, 2022, 54(5): 1-11.
JI X, ZHOU B X, HE G, et al.Research review of the key technology and application of large-scale water electrolysis powered by renewable energy to hydrogen and ammonia production[J]. Advanced engineering sciences, 2022, 54(5): 1-11.
[2] RABIEE A, MOHSENI-BONAB S M. Maximizing hosting capacity of renewable energy sources in distribution networks: a multi-objective and scenario-based approach[J]. Energy, 2017, 120: 417-430.
[3] DÍAZ-GONZÁLEZ F, SUMPER A, GOMIS-BELLMUNT O, et al. A review of energy storage technologies for wind power applications[J]. Renewable and sustainable energy reviews, 2012, 16(4): 2154-2171.
[4] MAHESH A, SANDHU K S.Hybrid wind/photovoltaic energy system developments: critical review and findings[J]. Renewable and sustainable energy reviews, 2015, 52: 1135-1147.
[5] 周京华, 孟祥飞, 陈亚爱, 等. 基于新能源发电的电解水制氢直流电源研究[J]. 太阳能学报, 2022, 43(6): 389-397.
ZHOU J H, MENG X F, CHEN Y A, et al.Research on dc power supply for hydrogen production from electrolytic water based on new energy generation[J]. Acta energiae solaris sinica, 2022, 43(6): 389-397.
[6] 李佳蓉, 林今, 肖晋宇, 等. 面向可再生能源消纳的电化工(P2X)技术分析及其能耗水平对比[J]. 全球能源互联网, 2020, 3(1): 86-96.
LI J R, LIN J, XIAO J Y, et al.Technical and energy consumption comparison of power-to-chemicals(P2X) technologies for renewable energy integration[J]. Journal of global energy interconnection, 2020, 3(1): 86-96.
[7] TALLAKSEN J, BAUER F, HULTEBERG C, et al.Nitrogen fertilizers manufactured using wind power: greenhouse gas and energy balance of community-scale ammonia production[J]. Journal of cleaner production, 2015, 107: 626-635.
[8] NAYAK-LUKE R, BAÑARES-ALCÁNTARA R, WILKINSON I. “Green” ammonia: impact of renewable energy intermittency on plant sizing and levelized cost of ammonia[J]. Industrial & engineering chemistry research, 2018, 57(43): 14607-14616.
[9] SHANER M R, ATWATER H A, LEWIS N S, et al.A comparative technoeconomic analysis of renewable hydrogen production using solar energy[J]. Energy & environmental science, 2016, 9(7): 2354-2371.
[10] ARMIJO J, PHILIBERT C.Flexible production of green hydrogen and ammonia from variable solar and wind energy: case study of chile and argentina[J]. International journal of hydrogen energy, 2020, 45(3): 1541-1558.
[11] BURDACK A, DUARTE-HERRERA L, LOPEZ-JIMENEZ G, et al.Techno-economic calculation of green hydrogen production and export from Colombia[J]. International journal of hydrogen energy, 2023, 48(5): 1685-1700.
[12] HE H J, HUANG Y Y, NAKADOMARI A, et al.Potential and economic viability of green hydrogen production from seawater electrolysis using renewable energy in remote Japanese Islands[J]. Renewable energy, 2023, 202: 1436-1447.
[13] KAKAVAND A, SAYADI S, TSATSARONIS G, et al.Techno-economic assessment of green hydrogen and ammonia production from wind and solar energy in Iran[J]. International journal of hydrogen energy, 2023, 48(38): 14170-14191.
[14] 刘晓艳. 计及初始荷电状态的含混合储能微电网双层调度研究[J]. 太阳能学报, 2024, 45(2): 416-420.
LIU X Y.Two-layer dispatch of microgrid with hybrid energy storage considering initial state of charge[J]. Acta energiae solaris sinica, 2024, 45(2): 416-420.
[15] NESAMALAR J J D, SURUTHI S, RAJA S C, et al. Techno-economic analysis of both on-grid and off-grid hybrid energy system with sensitivity analysis for an educational institution[J]. Energy conversion and management, 2021, 239: 114188.
[16] QI R M, GAO X P, LIN J, et al.Pressure control strategy to extend the loading range of an alkaline electrolysis system[J]. International journal of hydrogen energy, 2021, 46(73): 35997-36011.
[17] ZHANG H F, DESIDERI U.Techno-economic optimization of power-to-methanol with co-electrolysis of CO2 and H2O in solid-oxide electrolyzers[J]. Energy, 2020, 199: 117498.
[18] 赵振宇, 解冰清. 计及风光互补特性的风光容量优化配置模型[J]. 太阳能学报, 2023, 44(8): 149-156.
ZHAO Z Y, XIE B Q.Optimal allocation model of wind-solar capacity considering wind-solar complementary characteristics[J]. Acta energiae solaris sinica, 2023, 44(8): 149-156.
[19] 刘玉洁, 赵巍, 孙孝峰, 等. 储能系统锂离子电池附加受控电压源等效电路模型研究[J]. 太阳能学报, 2023, 44(8): 1-9.
LIU Y J, ZHAO W, SUN X F, et al.Equivalent circuit model of lithium-ion batteries attached controlled voltage source in energy storage system[J]. Acta energiae solaris sinica, 2023, 44(8): 1-9.
[20] GUO Y F, CHEN H C, WANG F C.The development of a hybrid PEMFC power system[J]. International journal of hydrogen energy, 2015, 40(13): 4630-4640.
[21] 徐敏, 阮新波, 刘福鑫, 等. 氢光联合供电系统的能量管理[J]. 电工技术学报, 2010, 25(10): 166-175.
XU M, RUAN X B, LIU F X, et al.Energy management for hybrid photovoltaic-fuel cell power system[J]. Transactions of China Electrotechnical Society, 2010, 25(10): 166-175.
[22] SALMON N, BAÑARES-ALCÁNTARA R. Impact of grid connectivity on cost and location of green ammonia production: Australia as a case study[J]. Energy & environmental science, 2021, 14(12): 6655-6671.
[23] SPOELSTRA S, HAIJE W G, DIJKSTRA J W.Techno-economic feasibility of high-temperature high-lift chemical heat pumps for upgrading industrial waste heat[J]. Applied thermal engineering, 2002, 22(14): 1619-1630.
[24] BERGEN A, PITT L, ROWE A, et al.Transient electrolyser response in a renewable-regenerative energy system[J]. International journal of hydrogen energy, 2009, 34(1): 64-70.
[25] 马丙泰, 刘海涛, 郝思鹏, 等. 基于价格需求响应的储能系统退化成本模型研究[J]. 太阳能学报, 2023, 44(10): 531-540.
MA B T, LIU H T, HAO S P, et al.Research on degradation cost model of energy storage system based on price demand response[J]. Acta energiae solaris sinica, 2023, 44(10): 531-540.

基金

国家重点研发计划(2021YFB4000500)

PDF(1286 KB)

Accesses

Citation

Detail

段落导航
相关文章

/