为确保发电场正常供应电力,设计短时强降雨天气风电场发电功率预测模型,提升发电功率预测效果。通过欧式距离与角度原则扩充短时强降雨天气小样本;利用改进深度可分离卷积算法,在正常天气样本内,提取气象-功率时空特征,并输入长短期记忆网络内,建立正常天气风电场发电功率基准值预测模型,得到发电功率基准值;在Transformer算法内,输入扩充样本,建立短时强降雨天气下发电功率损失值预测模型;利用基于注意力机制的Sequence to Sequence网络,结合扩样本,构造发电功率损失时间点预判模型,结合损失值预测模型,得到最终发电功率损失值;利用基准值减去损失值,得到短时强降雨天气下风电场发电功率预测结果。实验证明:该模型可有效扩充短时强降雨天气小样本;该方法可精准预判发电功率损失时间点,得到发电功率损失值,完成发电功率预测;不同风速下,该模型发电功率预测的关键失误指数与偏移程度均较低,即发电功率预测精度较高。
Abstract
To ensure the normal power supply of the power plant, a short-term heavy rainfall weather wind farm power generation prediction model is designed to improve the power generation prediction effect. Expanding small samples of short-term heavy rainfall weather through the principles of Euclidean distance and angle; using the improved depth separable convolution algorithm, the spatio-temporal characteristics of weather power are extracted from the normal weather samples, and input into the long-term and short-term memory network to establish the prediction model of normal weather wind farm power generation reference value, and obtain the power generation reference value; in the Transformer algorithm, input an expanded sample to establish a prediction model for power generation loss value under short-term heavy rainfall weather; using a Sequence to Sequence network based on attention mechanism, combined with expanding samples, a prediction model for the time point of power generation loss is constructed. Combined with a loss value prediction model, the final power generation loss value is obtained; subtract the loss value from the reference value to obtain the prediction results of wind farm power generation under short-term heavy rainfall weather. The experiment proves that the model can effectively expand the small samples of short-term heavy rainfall weather; this method can accurately predict the time point of power generation loss, obtain the value of power generation loss, and complete power generation prediction; under different wind speeds, the key error index and deviation degree of the model's power generation prediction are relatively low, indicating a higher accuracy of power generation prediction.
关键词
短时强降雨 /
风电场 /
发电功率 /
预测模型 /
可分离卷积 /
注意力机制
Key words
short term heavy rainfall /
wind farms /
power generation /
prediction model /
separable convolution /
attention mechanism
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 冉靖, 张智刚, 梁志峰, 等. 风电场风速和发电功率预测方法综述[J]. 数理统计与管理, 2020, 39(6): 1045-1059.
RAN J, ZHANG Z G, LIANG Z F, et al.Review of wind speed and wind power prediction methods[J]. Journal of applied statistics and management, 2020, 39(6): 1045-1059.
[2] 王一妹, 刘辉, 宋鹏, 等. 基于高斯混合模型聚类的风电场短期功率预测方法[J]. 电力系统自动化, 2021, 45(7): 37-43.
WANG Y M, LIU H, SONG P, et al.Short-term power forecasting method of wind farm based on Gaussian mixture model clustering[J]. Automation of electric power systems, 2021, 45(7): 37-43.
[3] 余沣, 董存, 王铮, 等. 考虑山东近海不同风能天气特征的风电功率区间预测模型[J]. 电网技术, 2020, 44(4): 1238-1247.
YU F, DONG C, WANG Z, et al.Wind power interval forecasting model considering different wind energy weather characteristics in Shandong offshore areas[J]. Power system technology, 2020, 44(4): 1238-1247.
[4] 林涛, 赵参参, 赵成林, 等. 计及频率分析的风电场短期功率预测[J]. 计算机仿真, 2020, 37(6): 81-84.
LIN T, ZHAO S S, ZHAO C L, et al.Short-term power prediction of wind farms considering frequency-domain analysis[J]. Computer simulation, 2020, 37(6): 81-84.
[5] 王育飞, 杨启星, 薛花. 考虑混沌特征的增强型大脑情绪神经网络光伏发电功率超短期预测模型[J]. 高电压技术, 2021, 47(4): 1165-1177.
WANG Y F, YANG Q X, XUE H.Ultra-short-term prediction model of enhanced brain emotional neural network considering chaotic characteristics for photovoltaic power generation[J]. High voltage engineering, 2021, 47(4): 1165-1177.
[6] 胡帅, 向月, 沈晓东, 等. 计及气象因素和风速空间相关性的风电功率预测模型[J]. 电力系统自动化, 2021, 45(7): 28-36.
HU S, XIANG Y, SHEN X D, et al.Wind power prediction model considering meteorological factor and spatial correlation of wind speed[J]. Automation of electric power systems, 2021, 45(7): 28-36.
[7] 盛四清, 金航, 刘长荣. 基于VMD-WSGRU的风电场发电功率中短期及短期预测[J]. 电网技术, 2022, 46(3): 897-904.
SHENG S Q, JIN H, LIU C R.Short-term and mid-short-term wind power forecasting based on VMD-WSGRU[J]. Power system technology, 2022, 46(3): 897-904.
[8] 徐一伦, 张彬桥, 黄婧, 等. 考虑天气类型和相似日的IWPA-LSSVM光伏发电功率预测[J]. 中国电力, 2023, 56(2): 143-149.
XU Y L, ZHANG B Q, HUANG J, et al.Forecast of photovoltaic power based on IWPA-LSSVM considering weather types and similar days[J]. Electric power, 2023, 56(2): 143-149.
[9] 叶林, 李奕霖, 裴铭, 等. 寒潮天气小样本条件下的短期风电功率组合预测[J]. 中国电机工程学报, 2023, 43(2): 543-554.
YE L, LI Y L, PEI M, et al.Combined approach for short-term wind power forecasting under cold weather with small sample[J]. Proceedings of the CSEE, 2023, 43(2): 543-554.
[10] 李丹, 王奇, 杨保华, 等. 基于独立稀疏SAE的多风电场超短期功率预测[J]. 电力系统及其自动化学报, 2022, 34(2): 23-30.
LI D, WANG Q, YANG B H, et al.Ultra-short-term power prediction of multiple wind farms based on independent sparse SAE[J]. Proceedings of the CSU-EPSA, 2022, 34(2): 23-30.
[11] 时珉, 许可, 王珏, 等. 基于灰色关联分析和GeoMAN模型的光伏发电功率短期预测[J]. 电工技术学报, 2021, 36(11): 2298-2305.
SHI M, XU K, WANG J, et al.Short-term photovoltaic power forecast based on grey relational analysis and GeoMAN model[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2298-2305.
[12] 易善军, 王汉军, 向勇, 等. 基于集成多尺度LSTM的短时风功率预测[J]. 重庆大学学报, 2021, 44(7): 75-81.
YI S J, WANG H J, XIANG Y, et al.Short-term wind power forecasting based on integrated multi-scale LSTM[J]. Journal of Chongqing University, 2021, 44(7): 75-81.
[13] 胡威, 张新燕, 郭永辉, 等. 基于游程检测法重构CEEMD的短时风功率预测[J]. 太阳能学报, 2020, 41(11): 317-325.
HU W, ZHANG X Y, GUO Y H, et al.Short-time wind power prediction of CEEMD reconstructed based on Run-length detection method[J]. Acta energiae solaris sinica, 2020, 41(11): 317-325.
[14] 赵凌云, 刘友波, 沈晓东, 等. 基于CEEMDAN和改进时间卷积网络的短期风电功率预测模型[J]. 电力系统保护与控制, 2022, 50(1): 42-50.
ZHAO L Y, LIU Y B, SHEN X D, et al.Short-term wind power prediction model based on CEEMDAN and an improved time convolutional network[J]. Power system protection and control, 2022, 50(1): 42-50.
[15] 廖雪超, 伍杰平, 陈才圣. 结合注意力机制与LSTM的短期风电功率预测模型[J]. 计算机工程, 2022, 48(9): 286-297, 304.
LIAO X C, WU J P, CHEN C S.Short-term wind power prediction model combining attention mechanism and LSTM[J]. Computer engineering, 2022, 48(9): 286-297, 304.
[16] 李宏扬, 高丙朋. 基于改进VMD和SNS-Attention-GRU的短期光伏发电功率预测[J]. 太阳能学报, 2023, 44(8): 292-300.
LI H Y, GAO B P.Short-term PV power forecasting based on improved VMD and SNS-Attention-GRU[J]. Acta energiae solaris sinica, 2023, 44(8): 292-300.
[17] 王献志, 曾四鸣, 周雪青, 等. 基于XGBoost联合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(4): 236-242.
WANG X Z, ZENG S M, ZHOU X Q, et al.Power forecast of photovoltaic generation based on XGBoost combined model[J]. Acta energiae solaris sinica, 2022, 43(4): 236-242.
基金
广西电网公司生产技改项目(046000GS62210006)