为解决中深层地源热泵系统(GSHP)地温衰减的问题,以邯郸市某民用节能建筑为研究对象,基于TRNSYS建立一种PV/T耦合中深层地源热泵系统(PV/T-GSHP),并与GSHP系统对比,模拟分析运行20 a PV/T-GSHP系统运行特性。探究PV/T组件的相关参数对土壤平均温度的影响。最后,将PV/T-GSHP系统与其他系统进行能耗对比。研究结果表明:与GSHP系统相比,PV/T-GSHP系统机组COP从6.44提高到6.81,但由于增加了泵功,系统COP降到2.38,但考虑发电量,平均每年可获得10015.831元收益;相似结构建筑PV/T组件屋顶铺设占比越大,集热泵流量越小,土壤平均温升越快;不考虑发电量时,PV/T-GSHP系统比燃气锅炉系统能耗高8.46%,与燃煤锅炉和电锅炉系统相比,分别可节约11.04%和48.55%的能耗;综合发电量时,20 a实际获得的发电量收益折合成燃煤量为210.05 t。
Abstract
A PV/T-coupled medium-deep GSHP system (PV/T-GSHP) was established based on TRNSYS to address the ground temperature attenuation issue in the medium-deep geothermal heat pump system (GSHP). The research object was a civil energy-saving building in Handan City. The operating characteristics of the 20-year PV/T-GSHP system were simulated and analyzed, and the influence of relevant parameters of the PV/T components on the average soil temperature was investigated. The energy consumption of the PV/T-GSHP system was compared with other systems. According to the research, the PV/T-GSHP system's unit COP rose from 6.44 to 6.81 when compared to the GSHP system, but the system COP was reduced to 2.38 due to the increased pump power. However, considering the electricity generation, an average annual income of 10 015.83 yuan can be obtained. The proportion of PV/T components on the roof of similar structured buildings affects the heat pump flow rate and the average soil temperature rise. When not considering electricity generation, the energy consumption of the PV/T-GSHP system was 8.46% higher than that of the gas boiler system. Compared with the coal-fired boiler and electric boiler systems, the energy consumption can be reduced by 11.04% and 48.55%, respectively. Taking into account the electricity generation, the actual income from electricity generation in 20 years is equivalent to 210.05 tons of coal.
关键词
太阳能 /
热泵系统 /
供暖 /
性能系数 /
中深层地热 /
地温衰减
Key words
solar energy /
heat pump systems /
heating /
coefficient of performance /
medium-deep geothermal /
ground temperature attenuation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CHOI J M, PARK Y, KANG S H.Heating performance verification of a ground source heat pump system with U-tube and double tube type GLHEs[J]. Renewable energy, 2013, 54: 32-39.
[2] BAO L L, WANG X, JIN P F, et al.An analytical heat transfer model for the mid-deep U-shaped borehole heat exchanger considering groundwater seepage[J]. Journal of building engineering, 2023, 64: 105612.
[3] ZHANG W K, WANG K X, GUAN C M, et al.Analysis and optimization of the performance for the ground source heat pump system with the middle-deep U-type well[J]. Applied thermal engineering, 2023, 219: 119404.
[4] MA Z D, ZHANG Y P, SAW L H, et al.Investigation on local geothermal energy attenuation after long-term operation of ground heat exchanger with considering aquifer effect[J]. Geothermics, 2023, 107: 102608.
[5] CAI W L, WANG F H, CHEN C F, et al.Long-term performance evaluation for deep borehole heat exchanger array under different soil thermal properties and system layouts[J]. Energy, 2022, 241: 122937.
[6] LIU J, WANG F H, GAO Y, et al.Influencing factors analysis and operation optimization for the long-term performance of medium-deep borehole heat exchanger coupled ground source heat pump system[J]. Energy and buildings, 2020, 226: 110385.
[7] JIANG J H, WANG F H, YANG X, et al.Evaluation of the long-term performance of the deep U-type borehole heat exchanger on different geological parameters using the Taguchi method[J]. Journal of building engineering, 2022, 59: 105122.
[8] 景登岩, 施志钢, 刘福强, 等. 基于TRNSYS的中深层地热供暖系统运行特性研究[J]. 可再生能源, 2022, 40(6): 751-759.
JING D Y, SHI Z G, LIU F Q, et al.Study on operation characteristics of the middle-deep geothermal heating system based on TRNSYS[J]. Renewable energy resources, 2022, 40(6): 751-759.
[9] WANG X, ZHENG M Y, ZHANG W Y, et al.Experimental study of a solar-assisted ground-coupled heat pump system with solar seasonal thermal storage in severe cold areas[J]. Energy and buildings, 2010, 42(11): 2104-2110.
[10] 穆志君, 关欣, 刘鹏. 太阳能光伏光热一体化系统运行实验研究[J]. 节能技术, 2009, 27(5): 445-447, 465.
MU Z J, GUAN X, LIU P.Experimental study of hybrid photovoltaic-thermal solar system[J]. Energy conservation technology, 2009, 27(5): 445-447, 465.
[11] YANG W B, ZHANG H, LIANG X F.Experimental performance evaluation and parametric study of a solar-ground source heat pump system operated in heating modes[J]. Energy, 2018, 149: 173-189.
[12] 刘仙萍, 田东, 雷豫豪, 等. 光伏/光热-地源热泵联合供热系统运行性能研究[J]. 太阳能学报, 2022, 43(9): 88-97.
LIU X P, TIAN D, LEI Y H, et al.Performance analysis for solar photovoltaic/thermalground source heat pump hybrid heating system[J]. Acta energiae solaris sinica, 2022, 43(9): 88-97.
[13] 季杰, 程洪波, 何伟, 等. 太阳能光伏光热一体化系统的实验研究[J]. 太阳能学报, 2005, 26(2): 170-173.
JI J, CHENG H B, HE W, et al.Experimental study on a hybrid photovoltaic/thermal solar system[J]. Acta energiae solaris sinica, 2005, 26(2): 170-173.
[14] 沈海笑, 王恩宇, 沈云祥, 等. 双地埋管群太阳能-地源热泵系统耦合方式研究[J]. 太阳能学报, 2020, 41(10): 361-368.
SHEN H X, WANG E Y, SHEN Y X, et al.Study on coupling methods of solar-ground source heat pump system with double buried pipe groups[J]. Acta energiae solaris sinica, 2020, 41(10): 361-368.
[15] 王恩宇, 沈云祥, 陈宇朴, 等. 太阳能-地源热泵系统双地埋管群利用方式研究[J]. 热科学与技术, 2020, 19(2): 103-109.
WANG E Y, SHEN Y X, CHEN Y P, et al.Study on the utilization mode of double buried pipe groups of solar-ground source heat pump system[J]. Journal of thermal science and technology, 2020, 19(2): 103-109.
[16] 金满, 徐洪涛, 张剑飞, 等. 太阳能辅助地源热泵联合供暖系统模拟研究[J]. 上海理工大学学报, 2021, 43(2): 111-117.
JIN M, XU H T, ZHANG J F, et al.Numerical study on the combined heating system of a ground-source heat pump assisted by the solar energy[J]. Journal of University of Shanghai for Science and Technology, 2021, 43(2): 111-117.
[17] GB 55015—2021, 建筑节能与可再生能源利用通用规范[S].
GB 55015—2021, General specifications for building energy efficiency and utilization of renewable energy[S].
[18] 杨少刚. 基于TRNSYS地埋管地源热泵变流量系统仿真研究[D]. 济南: 山东建筑大学, 2016.
YANG S G.The simulation study of ground-source heat pump variable flow rate system based on TRNSYS[D]. Ji'nan: Shandong Jianzhu University, 2016.
[19] 鲍玲玲, 徐豹, 王子勇, 等. 中深层同轴套管式地埋管换热器传热性能分析[J]. 地球物理学进展, 2020, 35(4): 1217-1222.
BAO L L, XU B, WANG Z Y, et al.Heat transfer performance analysis of the middle-deep coaxial casing ground heat exchanger[J]. Progress in geophysics, 2020, 35(4): 1217-1222.
[20] 金光, 陈正浩, 郭少朋, 等. 内蒙古地区太阳能-地源热泵系统供暖可行性研究[J]. 太阳能学报, 2021, 42(4): 334-341.
JIN G, CHEN Z H, GUO S P, et al.Feasibility analysis of heating with solar energy-ground source heat pump system in Inner Mongolian areas[J]. Acta energiae solaris sinica, 2021, 42(4): 334-341.
[21] 鲍玲玲, 崔军艳, 李永. 跨季节空气-土壤蓄热式热泵系统可行性分析[J]. 科学技术与工程, 2022, 22(14): 5837-5844.
BAO L L, CUI J Y, LI Y.Feasibility analysis of cross-season air-soil regenerative heat pump system[J]. Science technology and engineering, 2022, 22(14): 5837-5844.
基金
河北省自然科学基金(E2023402072)