基于ADRC的PEMFC系统阴极相对湿度和氧气过量比控制

肖仰淦, 吴肖龙, 李曦

太阳能学报 ›› 2023, Vol. 44 ›› Issue (12) : 499-509.

PDF(3315 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3315 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (12) : 499-509. DOI: 10.19912/j.0254-0096.tynxb.2023-0853

基于ADRC的PEMFC系统阴极相对湿度和氧气过量比控制

  • 肖仰淦1, 吴肖龙1, 李曦2
作者信息 +

CONTROL OF CATHODE RELATIVE HUMIDITY AND OXYGEN EXCESS RATIO IN PEMFC SYSTEM BASED ON ADRC

  • Xiao Yanggan1, Wu Xiaolong1, Li Xi2
Author information +
文章历史 +

摘要

为解决传统的PID控制方法在处理质子交换膜燃料电池(PEMFC)系统因阴极相对湿度和氧气过量比跟踪过程中存在响应速度慢、抖振显著等不足,进而引发的性能和效率问题,基于采用膜水合、气体流量、能斯特电压等运行机制构建的PEMFC系统模型,提出一种具有线性反馈特性及超调抑制功能的PEMFC系统自抗扰控制(ADRC)方法,并给出控制参数配置。结果表明,采用ADRC控制方法可实现PEMFC系统阴极相对湿度和氧气过量比的低偏差及快速跟踪控制,有助于提升系统在较大负载变换扰动下的快速跟踪和超调抑制的控制性能,具有较好的应用前景。

Abstract

To address the shortcomings of traditional PID control methods in handling the tracking process of cathode relative humidity and oxygen excess ratio in Proton Exchange Membrane Fuel Cell (PEMFC) systems, such as slow response and significant oscillations, leading to performance and efficiency issues, a PEMFC system model based on membrane hydration, gas flow rate, Nernst voltage, and other operational mechanisms is constructed. In this context, a PEMFC system Active Disturbance Rejection Control (ADRC) method is proposed, which includes linear feedback characteristics and has overshoot suppression capability. Control parameter configurations are also provided. The results demonstrate that the implementation of the ADRC control method achieves low deviation and fast tracking control of the cathode relative humidity and oxygen excess ratio in the PEMFC system. This method is helpful to improve the control performance of fast tracking and overshoot suppression under large load change disturbance, and has a good application prospect.

关键词

质子交换膜燃料电池 / 干扰抑制 / 系统分析 / 阴极相对湿度 / 氧气过量比

Key words

proton exchange membrane fuel cells (PEMFC) / disturbance rejection / systems analysis / cathode relative humidity / oxygen excess ratio

引用本文

导出引用
肖仰淦, 吴肖龙, 李曦. 基于ADRC的PEMFC系统阴极相对湿度和氧气过量比控制[J]. 太阳能学报. 2023, 44(12): 499-509 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0853
Xiao Yanggan, Wu Xiaolong, Li Xi. CONTROL OF CATHODE RELATIVE HUMIDITY AND OXYGEN EXCESS RATIO IN PEMFC SYSTEM BASED ON ADRC[J]. Acta Energiae Solaris Sinica. 2023, 44(12): 499-509 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0853
中图分类号: TM9111.4   

参考文献

[1] 刘志恩, 罗玉兰, 周辉, 等. 燃料电池空气系统增湿器建模与仿真[J]. 太阳能学报, 2022, 43(8): 504-509.
LIU Z E, LUO Y L, ZHOU H, et al.Modeling and simulation of humidifier for fuel cell air system[J]. Acta energiae solaris sinica, 2022, 43(8): 504-509.
[2] 朱京宇, 谈金祝, 孙澳. 阴极相对湿度对质子交换膜燃料电池电化学性能的影响[J]. 南京工业大学学报(自然科学版), 2021, 43(4): 456-460.
ZHU J Y, TAN J Z, SUN A.Effects of cathode relative humidity on the electrochemical performance of proton exchange membrane fuel cell[J]. Journal of Nanjing Tech University (natural science edition), 2021, 43(4): 456-460.
[3] 朱华美. PEMFC系统建模与基于氧气过量比的控制策略研究[D]. 长春: 吉林大学, 2022.
ZHU H M.Research on modeling of PEMFC system and control strategy based on oxygen excess ratio[D]. Changchun: Jilin University, 2022.
[4] 张佩, 王志伟, 杜常清, 等. 车用质子交换膜燃料电池空气系统过氧比控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 1996-2003.
ZHANG P, WANG Z W, DU C Q, et al.Oxygen excess ratio control method of proton exchange membrane fuel cell air system for vehicle[J]. Journal of Jilin University (engineering and technology edition), 2022, 52(9): 1996-2003.
[5] 赵阳, 王树博, 李微微, 等. 质子交换膜燃料电池电压损耗[J]. 清华大学学报(自然科学版), 2020, 60(3): 254-262.
ZHAO Y, WANG S B, LI W W, et al.Polarization of the membrane electrode assembly in a proton exchange membrane fuel cell[J]. Journal of Tsinghua University (science and technology), 2020, 60(3): 254-262.
[6] 常国峰, 许艺鸣, 樊芮嘉. 进口温湿度对质子交换膜燃料电池输出性能的影响[J]. 同济大学学报(自然科学版), 2021, 49(S1): 231-237.
CHANG G F, XU Y M, FAN R J.Effects of inlet gas temperature and relative humidity on performance characteristics of PEM fuel cell[J]. Journal of Tongji University (natural science), 2021, 49(S1): 231-237.
[7] 喻强, 汪宏斌, 陈卓, 等. 相对湿度对PEMFC膜电极影响的数值模拟[J]. 太阳能学报, 2021, 42(12): 343-348.
YU Q, WANG H B, CHEN Z, et al.Numerical simulation of influence of relative humidity on PEMFC membrane electrode assembly[J]. Acta energiae solaris sinica, 2021, 42(12): 343-348.
[8] HAN J, YU S, YI S.Oxygen excess ratio control for proton exchange membrane fuel cell using model reference adaptive control[J]. International journal of hydrogen energy, 2019, 44(33): 18425-18437.
[9] KIM B M, CHOI Y H, YOO S J.Adaptive control of proton exchange membrane fuel cell air supply systems with asymmetric oxygen excess ratio constraints[J]. IEEE access, 2019, 8: 5537-5549.
[10] CHEN H C, LIU Z, YE X C, et al.Air flow and pressure optimization for air supply in proton exchange membrane fuel cell system[J]. Energy, 2022, 238: 121949.
[11] SHARMA S, BHASKAR BABU G U. A new control strategy for a higher order proton exchange membrane fuel cell system[J]. International journal of hydrogen energy, 2020, 45(48): 25945-25959.
[12] MAHJOUBI C, OLIVIER J C, SKANDER-MUSTAPHA S, et al.An improved thermal control of open cathode proton exchange membrane fuel cell[J]. International journal of hydrogen energy, 2019, 44(22): 11332-11345.
[13] CHEN H C, LIU B, LIU R T, et al.Optimal interval of air stoichiometry under different operating parameters and electrical load conditions of proton exchange membrane fuel cell[J]. Energy conversion and management, 2020, 205: 112398.
[14] TIAN Y, ZOU Q, LIU J Q, et al.Novel hybrid control scheme of a proton exchange membrane fuel cell air supply system[J]. Energy technology, 2022, 10(2): 2100906.
[15] ZHANG B, LIN F, ZHANG C Z, et al.Design and implementation of model predictive control for an open-cathode fuel cell thermal management system[J]. Renewable energy, 2020, 154: 1014-1024.
[16] WU Z L, GAO Z Q, LI D H, et al.On transitioning from PID to ADRC in thermal power plants[J]. Control theory and technology, 2021, 19(1): 3-18.
[17] MOSAYYEBI S R, SHAHALAMI S H, MOJALLALI H.Speed control of a DFIG-based wind turbine using a new generation of ADRC[J]. International journal of green energy, 2023, 20(14): 1669-1698.
[18] SUN L, SHEN J, HUA Q S, et al.Data-driven oxygen excess ratio control for proton exchange membrane fuel cell[J]. Applied energy, 2018, 231: 866-875.
[19] (美)M. 哈希姆·内里(M. Hashem Nehrir),(美)王才胜著, 赵仁德, 等译. 燃料电池的建模与控制及其在分布式发电中的应用[M]. 北京: 机械工业出版社, 2019: 47-58.
HASHEM N M, WANG C S, ZHAO R D.Modeling and control of fuel cells and their applications in distributed power generation[M]. Beijing: China Machine Press, 2019: 47-58.
[20] 陈维荣, 李奇. 质子交换膜燃料电池系统发电技术及其应用[M]. 北京: 科学出版社, 2016: 23-34.
CHEN W R, LI Q.Proton excbange membrane fuel cell system power generation techonlogy and its application[M]. Beijing: Science Press, 2016: 23-34.
[21] (美)科琳·施皮格尔, 著, 张新丰, 张智明译. 质子交换膜燃料电池建模与MATLAB仿真[M]. 北京: 电子工业出版社, 2013: 75-87.
(USA)Colleen S. Proton exchange membrane fuel cell modeling and MATLAB Simulation[M]. Beijing: Electronic Industry Press, 2013: 75-87.
[22] 杨朵. 燃料电池空气供给系统控制与故障诊断策略研究[D]. 合肥: 中国科学技术大学, 2021.
YANG D.Research on control and fault diagnosis strategy of fuel cell air supply system[D]. Hefei: University of Science and Technology of China, 2021.
[23] CHEN X, XU J H, LIU Q, et al.Active disturbance rejection control strategy applied to cathode humidity control in PEMFC system[J]. Energy conversion and management, 2020, 113389.
[24] 李奇. 质子交换膜燃料电池系统建模及其控制方法研究[D]. 成都: 西南交通大学, 2011.
LI Q.Research on modeling and control of proton exchange membrane fuel cell system[D]. Chengdu: Southwest Jiaotong University, 2011.
[25] 徐彩前. 质子交换膜燃料电池建模与湿度优化控制[D]. 成都: 电子科技大学, 2022.
XU C Q.PEM fuel cell modeling and humidity optimizing control[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
[26] ZHANG Y Y, SUN J C, ZHANG Y, et al.Dynamic modeling and simulation test of a 60 kW PEMFC generation system[J]. Journal of Zhejiang University-science A, 2011, 12(6): 475-482.
[27] LI X, CAO G Y, ZHU X J.Modeling and control of PEMFC based on least squares support vector machines[J]. Energy conversion and management, 2006, 47(7/8): 1032-1050.
[28] 高志强. 自抗扰控制思想探究[J]. 控制理论与应用, 2013, 30(12): 1498-1510.
GAO Z Q.On the foundation of active disturbance rejection control[J]. Control theory & applications, 2013, 30(12): 1498-1510.
[29] 周雪松, 杨子明, 马幼捷. 基于神经网络的最优带宽风电并网自抗扰控制[J]. 太阳能学报, 2022, 43(9): 226-235.
ZHOU X S, YANG Z M, MA Y J.Optimal bandwidth active disturbance rejection control for wind turbine grid-connection based on neural network[J]. Acta energiae solaris sinica, 2022, 43(9): 226-235.
[30] 李健, 谭文, 张彬文. 观测器带宽参数化的自抗扰控制[J]. 控制工程, 2022, 29(7): 1181-1186.
LI J, TAN W, ZHANG B W.Observer-bandwidth-based active disturbance rejection control[J]. Control engineering of China, 2022, 29(7): 1181-1186.

基金

国家自然科学基金(62203204; U2066202); 江西省自然科学基金(20212BAB212013); 国家重点研发计划(2022YFB4002200)

PDF(3315 KB)

Accesses

Citation

Detail

段落导航
相关文章

/