以广东某深远海域大容量风电机组五连筒导管架基础为研究对象,采用有限元软件对五连筒基础在倾斜率、极限承载力和屈曲特性等方面开展深入研究,并对筒顶处导管架与基础连接节点进行多参数敏感性分析,从而得到受力及承载最优的结构体型。研究结果表明:满足相同容量机组荷载运行要求的前提下,五连筒基础与单筒基础结构相比,前者在倾斜率、承载力及抗屈曲特性上优势明显;随着筒顶节点的外移,筒型基础边筒竖向变形逐渐增大,中筒则相反;当筒顶节点靠近中筒时,主要由中筒受力,应力最大部位主要集中在边筒和中筒筒裙底部连接处;当筒顶节点向外偏移时,受力部位由中筒转移到边筒,且应力最大部位转移到沿加载方向的边筒筒裙顶部;基础的极限承载力均随导管架根部开度增加呈线性趋势增长,在水平及弯矩荷载分别作用下,旋转中心附近的被动土压力受筒顶节点位置影响较大,筒顶节点越往外偏移,被动土压力越小;旋转中心以下的主动土压力受筒顶节点位置影响同样较大,筒顶节点越往外偏移,主动土压力越大。
Abstract
The research focuses on a five-bucket jacket foundation that used for a large wind turbine in a far-reaching sea area in Guangdong. The finite element software was used to carry out on the tilt rate, ultimate bearing capacity and buckling characteristics of the bucket. And the multi-parameter sensitivity analysis was carried out on the nodes at the top of the bucket to obtain the optimal structural. It is found that the five-bucket foundation has obvious advantages compared with the single-bucket foundation in the following parts. When the top nodes are close to the middle bucket, the stress is mainly exerted by the middle bucket, and the maximum stress is mainly concentrated at the joint of the side bucket and the bottom of the middle bucket skirt. When the top nodes of the bucket shift outward, the stress is transferred from the middle bucket to the side bucket, and the maximum stress is transferred to the top of the side bucket skirt along the loading direction.The ultimate bearing capacity of the foundation increases linearly with the increase of the opening of the jacket root. Under the horizontal load and the bending moment load respectively, the passive earth pressure near the center of rotation is greatly affected by the bucket top nodes. The more the top nodes deviates, the smaller the passive earth pressure becomes. The active earth pressure below the center of rotation is greatly affected by the bucket top nodes, and the more the top nodes is shifted outward, the greater the active earth pressure will be.
关键词
海上风电 /
应力分析 /
承载力 /
五连筒基础 /
筒顶节点
Key words
offshore wind /
power stress analysis /
bearing capacity /
five-bucket structure /
bucket top node
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 甄妮. 风电产业新格局:基地规模化、风机大型化支撑行业高质量发展[J]. 能源, 2022(7): 25-28.
ZHEN N.The new pattern of wind power industry: large-scale base and large-scale wind turbines support the high-quality development of the industry[J]. Energy, 2022(7): 25-28.
[2] 姚钢, 杨浩猛, 周荔丹, 等. 大容量海上风电机组发展现状及关键技术[J]. 电力系统自动化, 2021, 45(21): 33-47.
YAO G, YANG H M, ZHOU L D, et al.Development status and key technologies of large-capacity offshore wind turbines[J]. Automation of electric power systems, 2021, 45(21): 33-47.
[3] 张浦阳, 黄宣旭. 海上风电吸力式筒型基础应用研究[J]. 南方能源建设, 2018, 5(4): 1-11.
ZHANG P Y, HUANG X X.Application research on suction bucket foundation for offshore wind power[J]. Southern energy construction, 2018, 5(4): 1-11.
[4] 任灏, 马兆荣, 李聪, 等. 海上风电多筒导管架基础湿拖过程稳性控制研究[J]. 南方能源建设, 2021, 8(增刊1): 65-69.
REN H, MA Z R, LI C, et al.Study on stability control of offshore wind power multi-barrel jacket foundation in wet towing process[J]. Southern energy construction, 2021, 8(S1): 65-69.
[5] 刘沙, 王大龙, 杨旭, 等. 海上风电大直径宽浅型筒型基础屈曲分析[J]. 水道港口, 2022, 43(4): 512-517.
LIU S, WANG D L, YANG X, et al.Buckling analysis of large-diameter shallow bucket foundation of offshore wind power[J]. Journal of waterway and harbor, 2022, 43(4): 512-517.
[6] 练继建, 朱航, 刘润, 等. 一种海上风电五连筒导管架结构: CN114232672B[P].2023-04-18.
LIAN J J, ZHU H, LIU R, et al. A structure of offshore wind power five connected tube duct frame: CN114232672B[P].2023-04-18.
[7] 朱航, 李孟超, 郭耀华, 等. 深水海上风电三筒导管架基础受力及浮运分析[J]. 太阳能学报, 2022, 43(11): 269-276.
ZHU H, LI M C, GUO Y H, et al.Mechanics and floating analysis of three-bucket jacket foundation for offshore wind power in deep water[J]. Acta energiae solaris sinica, 2022, 43(11): 269-276.
[8] HUNG L C, KIM S R.Evaluation of combined horizontal-moment bearing capacities of tripod bucket foundations in undrained clay[J]. Ocean engineering, 2014, 85: 100-109.
[9] WANG X F, ZENG X W, LI J L, et al.A review on recent advancements of substructures for offshore wind turbines[J]. Energy conversion and management, 2018, 158: 103-119.
[10] 杨德, 胡雪扬. 海上风电窄深式三筒导管架偏心承载特性分析[J]. 能源与环境, 2021(3): 2-7.
YANG D, HU X Y.Analysis of eccentric bearing characteristics of narrow and deep three-tube jacket for offshore wind power[J]. Energy and environment, 2021(3): 2-7.
[11] 闫瑞洋. 深水风电三筒导管架结构屈曲及承载特性研究[D]. 天津: 天津大学, 2020.
YAN R Y.Research on buckling and bearing characteristics of tripod-bucket jacket foundation for offshore wind turbines in deep water[D]. Tianjin: Tianjin University, 2020.
[12] 练继建, 翁珮瑶, 郭耀华, 等. 海床表层软土对宽浅式筒型基础承载特性影响研究[J]. 海洋工程, 2022, 40(3): 1-9.
LIAN J J, WENG P Y, GUO Y H, et al.Influence of soft top soil on bearing capacity of wide-shallow bucket foundation for offshore wind turbines[J]. The ocean engineering, 2022, 40(3): 1-9.
[13] 丁红岩, 张超, 张浦阳, 等. 上覆软土层对海上风电四筒基础承载特性影响[J]. 哈尔滨工程大学学报, 2020, 41(1): 67-75.
DING H Y, ZHANG C, ZHANG P Y, et al.Effect of overlying soft soil layer on bearing capacity of four bucket foundation for offshore wind turbines[J]. Journal of Harbin Engineering University, 2020, 41(1): 67-75.
[14] LIU M M, YANG M, WANG H J.Bearing behavior of wide-shallow bucket foundation for offshore wind turbines in drained silty sand[J]. Ocean engineering, 2014, 82: 169-179.
[15] GB/T 712—2011, 船舶及海洋工程用结构钢[S].
GB/T 712—2011, Ship and ocean engineering structural steel[S].
[16] LYU X, CHENG Y Z, WANG W S, et al.Experimental study on local scour around submerged monopile under combined waves and current[J]. Ocean engineering, 2021, 240: 109929.
[17] 李思琦, 王媛, 李庆文, 等. 非共面V-H-M复合加载模式下海上风电桶形基础破坏包络面特性研究[J]. 太阳能学报, 2021, 42(6): 391-399.
LI S Q, WANG Y, LI Q W, et al.Failure envelopes of bucket foundations for offshore wind turbines under combined non-planar V-H-M loading[J]. Acta energiae solaris sinica, 2021, 42(6): 391-399.
[18] 李大勇, 曹立雪, 高盟, 等. 水平荷载作用下裙式吸力基础承载性能研究[J]. 海洋工程, 2013, 31(1): 67-73.
LI D Y, CAO L X, GAO M, et al.Bearing capacity of skirted suction caisson in sand under horizontal monotonic/cyclic loading[J]. The ocean engineering, 2013, 31(1): 67-73.
[19] DING H Y, LIU Y G, ZHANG P Y, et al.Model tests on the bearing capacity of wide-shallow composite bucket foundations for offshore wind turbines in clay[J]. Ocean engineering, 2015, 103: 114-122.
[20] 张浦阳, 冯嘉成, 李响亮, 等. 土质对三筒吸力桩导管架基础水平承载特性的影响[J]. 太阳能学报, 2023, 44(4): 189-194.
ZHANG P Y, FENG J C, LI X L, et al.Influence of different soil on horizontal bearing characteristics of tripod suction jucket foundations[J]. Acta energiae solaris sinica, 2023, 44(4): 189-194.
[21] 郭小亮, 崔文涛. 筒形基础屈曲强度及非线性有限元分析[J]. 江苏船舶, 2016, 33(4): 16-18.
GUO X L, CUI W T.Buckling strength and nonlinear finite element analysis of cylindrical foundation[J]. Jiangsu ship, 2016, 33(4): 16-18.