根据槽式太阳能集热特性,选择R600和R245fa两种循环工质,以系统火用效率和单位能量产出成本为目标构建简单有机朗肯循环(BORC)和回热式有机朗肯循环(IHE-ORC)系统热经济性模型。利用非支配排序遗传算法进行双目标优化,采用熵权-TOPSIS法决策工质的两系统最佳热经济性,分析工质的两系统热经济性随运行参数蒸发压力、过热度和冷凝温度的变化。结果表明:在优化决策下,采用工质R245fa的IHE-ORC系统最佳火用效率和单位能量产出成本分别为54.11%、0.1548美元/kWh,热力性优势明显,采用工质R600的BORC系统最佳火用效率和单位能量产出成本分别为49.89%、0.1318美元/kWh,经济性表现较优;在运行参数变化范围内,IHE-ORC系统火用效率和单位能量产出成本均高于BORC系统,工质R245fa的系统火用效率显著较高,工质R600的系统单位能量产出成本相对较低。
Abstract
According to the heat collection characteristics of parabolic trough solar collector, R600 and R245fa are selected as circulating working fluids. The thermo-economic models of basic organic Rankine cycle (BORC) and the ORC system with internal heat exchanger (IHE-ORC) are established with the exergy efficiency and levelized energy cost (LEC) as objectives, respectively. Bi-objective optimization is conducted using the non-dominated sorting genetic algorithm. The optimal thermo-economic performance of two systems with two working fluids are obtained using TOPSIS with entropy weight method integrated. The variations of thermo-economic performance of the systems with evaporation pressure, superheat degree and condensation temperature are analyzed. The results show that, under optimization and decision making, when R245fa is used, IHE-ORC system has clear advantage in thermodynamic performance with the optimal exergy efficiency and LEC of 54.11% and 0.1548 $/kWh, respectively. When R600 is used, BORC system exhibits better economic performance with the optimal exergy efficiency and LEC of 49.89% and 0.1318 $/kWh, respectively. Within the variation range of operating parameters, the exergy efficiency and LEC of IHE-ORC system are always higher than those of BORC, and much higher exergy efficiency is obtained when using R245fa, while much lower LEC is achieved when using R600.
关键词
太阳能 /
朗肯循环 /
遗传算法 /
槽式太阳能集器 /
热力性 /
经济性
Key words
solar energy /
Rankine cycle /
genetic algorithms /
parabolic trough solar collecor /
thermodynamics /
economy
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 胡硕倬, 李健, 葛众, 等. 基于HFOs工质的有机朗肯循环系统热经济性能分析[J]. 工程热物理学报, 2020, 41(4): 816-821.
HU S Z, LI J, GE Z, et al.Thermo-economic analysis of organic Rankine cycle system using HFOs as working fluids[J]. Journal of engineering thermophysics, 2020, 41(4): 816-821.
[2] 沈阳, 王瑞祥. R245fa、R123对太阳能有机朗肯循环系统性能的影响[J]. 太阳能学报, 2017, 38(11): 3085-3090.
SHEN Y, WANG R X.Effect of R245fa and R123 on performance of solar organic Rankine cycle system[J]. Acta energiae solaris sinica, 2017, 38(11): 3085-3090.
[3] 顾煜炯, 耿直, 谢典. 太阳能有机朗肯循环系统性能分析及综合评价[J]. 太阳能学报, 2018, 39(2): 482-490.
GU Y J, GENG Z, XIE D.Performance analysis and comprehensive evaluation of organic Rankine cycle system driven by solar energy[J]. Acta energiae solaris sinica, 2018, 39(2): 482-490.
[4] YANG J Z, LI J, YANG Z, et al.Thermodynamic analysis and optimization of a solar organic Rankine cycle operating with stable output[J]. Energy conversion and management, 2019, 187: 459-471.
[5] ASKARI-ASLI ARDEH E, LONI R, NAJAFI G, et al. Exergy and economic assessments of solar organic Rankine cycle system with linear V-shape cavity[J]. Energy conversion and management, 2019, 199: 111997.
[6] DESAI N B, BANDYOPADHYAY S.Thermo-economic analysis and selection of working fluid for solar organic Rankine cycle[J]. Applied thermal engineering, 2016, 95: 471-481.
[7] 李子航, 王占博, 苗政, 等. 亚临界有机朗肯循环系统工质筛选及热经济性分析[J]. 化工学报, 2021, 72(9): 4487-4495.
LI Z H, WANG Z B, MIAO Z, et al.Working fluid selection and thermo-economic analysis of sub-critical organic Rankine cycle[J]. CIESC journal, 2021, 72(9): 4487-4495.
[8] 韩中合, 梅中恺, 李鹏. 中温有机朗肯循环多目标优化及工质筛选[J]. 太阳能学报, 2019, 40(10): 2739-2747.
HAN Z H, MEI Z K, LI P.Multi-objective optimization and working fluid selection for medium temperature organic Rankine cycle[J]. Acta energiae solaris sinica, 2019, 40(10): 2739-2747.
[9] ZHANG C, LIU C, WANG S K, et al.Thermo-economic comparison of subcritical organic Rankine cycle based on different heat exchanger configurations[J]. Energy, 2017, 123: 728-741.
[10] ZARE V.A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants[J]. Energy conversion and management, 2015, 105: 127-138.
[11] AHMADI A, EL HAJ ASSAD M, JAMALI D H, et al. Applications of geothermal organic Rankine cycle for electricity production[J]. Journal of cleaner production, 2020, 274: 122950.
[12] NONDY J, GOGOI T K.Exergoeconomic investigation and multi-objective optimization of different ORC configurations for waste heat recovery: a comparative study[J]. Energy conversion and management, 2021, 245: 114593.
[13] FENG Y Q, ZHANG Y N, LI B X, et al.Comparison between regenerative organic Rankine cycle (RORC) and basic organic Rankine cycle (BORC) based on thermoeconomic multi-objective optimization considering exergy efficiency and levelized energy cost (LEC)[J]. Energy conversion and management, 2015, 96: 58-71.
[14] BLIEM C, ZANGRANDO F, HASSANI V.Value analysis of advanced heat rejection systems for geothermal power plants[C]//IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference. Washington, DC, USA, 1996: 1616-1621.
[15] 李慧君, 王培毅, 范伟. 两种有机朗肯循环发电系统的性能分析[J]. 太阳能学报, 2017, 38(6): 1667-1673.
LI H J, WANG P Y, FAN W.Performance analysis of two organic Rankine cycle generation systems[J]. Acta energiae solaris sinica, 2017, 38(6): 1667-1673.
[16] WANG L B, BU X B, LI H S.Multi-objective optimization and off-design evaluation of organic Rankine cycle (ORC) for low-grade waste heat recovery[J]. Energy, 2020, 203: 117809.
[17] WANG S K, LIU C, ZHANG S J, et al.Multi-objective optimization and fluid selection of organic Rankine cycle (ORC) system based on economic-environmental-sustainable analysis[J]. Energy conversion and management, 2022, 254: 115238.
[18] TURTON R, SHAEIWITZ J A, BHATTACHARYYA D, et al.Analysis, synthesis, and design of chemical processes[M]. Englewood Cliffs: Prentice Hall, 2018.
[19] KAKAÇ S, LIU H T, PRAMUANJAROENKIJ A.Heat exchangers: selection, rating, and thermal design[M]. Boca Raton: CRC Press, 2020.
[20] GÜRGEN S, KAHRAMAN H T, ARAS S, et al. A comprehensive performance analysis of meta-heuristic optimization techniques for effective organic Rankine cycle design[J]. Applied thermal engineering, 2022, 213: 118687.
[21] GUNGOR K, WINTERTON R.Simplified general correlation for saturated flow boiling and comparisons of correlations with data[J]. Chemical engineering research and design, 1987, 65: 148-156.
[22] 兰州石油机械研究所. 换热器[M]. 2版. 北京: 中国石化出版社, 2013: 959.
Lanzhou Petroleum Machinery Research Institute. Heat exchanger[M]. 2nd ed. Beijing: China Petrochemical Press, 2013: 959.
[23] YAN Y Y, LIO H C, LIN T F.Condensation heat transfer and pressure drop of refrigerant R-134a in a plate heat exchanger[J]. International journal of heat and mass transfer, 1999, 42(6): 993-1006.
[24] ZHANG C, LIU C, XU X X, et al.Effects of superheat and internal heat exchanger on thermo-economic performance of organic Rankine cycle based on fluid type and heat sources[J]. Energy, 2018, 159: 482-495.
[25] WANG M, JING R, ZHANG H R, et al.An innovative organic Rankine cycle (ORC) based ocean thermal energy conversion (OTEC) system with performance simulation and multi-objective optimization[J]. Applied thermal engineering, 2018, 145: 743-754.
[26] ALIRAHMI S M, RAHMANI DABBAGH S, AHMADI P, et al.Multi-objective design optimization of a multi-generation energy system based on geothermal and solar energy[J]. Energy conversion and management, 2020, 205: 112426.
[27] TIWARI D, SHERWANI A F, MUQEEM M, et al.Parametric optimization of organic Rankine cycle using TOPSIS integrated with entropy weight method[J]. Energy sources, part A: recovery, utilization, and environmental effects, 2022, 44(1): 2430-2447.
基金
国家自然科学基金青年项目(51906119); 内蒙古工业大学博士科研启动基金(DC2100000957)