以DTU 10 MW风电机组以及OO-Star半潜式平台为对象,提出一种两分叉系泊系统,基于OPENFAST软件在50年一遇极端工况下建模仿真,对比采用两分叉系泊系统平台运动响应及系泊张力的变化,并研究其分叉点位置的影响。结果表明,新型两分叉系泊系统使得平台的纵荡、纵摇、艏摇幅值分别减小32.9%、29.4%和39.1%,很大程度上提升了风电机组的稳定性。此外,平台的系泊张力均值降低为原来的23.4%,更能保证漂浮式平台在极端工况下的生存能力。
Abstract
A bifurcated mooring system is proposed for the DTU 10 MW wind turbine and the OO-Star semi-submersible platform. Based on the OPENFAST software, the system is modeled and simulated under a 50-year extreme condition,and the changes in platform motion response and mooring tension are compared with which of the original system. The effect of the bifurcation point position is also studied. The results show that the new bifurcated mooring system reduces the platform's heave, pitch, and yaw amplitudes by 32.9%, 29.4%, and 39.1%, respectively, greatly enhancing the stability of the wind turbine. In addition, the mean mooring tension of the platform is reduced by 23.4%, which further ensures the survival capability of the floating platform under extreme conditions.
关键词
海上风电机组 /
动态响应 /
系泊缆 /
稳定性 /
半潜式平台
Key words
offshore wind turbines /
dynamic response /
mooring cable /
stability /
semi-submersible platform
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张礼贤, 施伟, 李昕, 等. 风冰联合作用下大型单桩海上风电机组动力特性[J]. 太阳能学报, 2023, 44(2): 59-66.
ZHANG L X, SHI W, LI X, et al.Dynamic characteristics of large monopile offshore wind turbine under wind-ice interaction[J]. Acta energiae solaris sinica, 2023, 44(2): 59-66.
[2] 李志川, 胡鹏, 马佳星, 等. 中国海上风电发展现状分析及展望[J]. 中国海上油气, 2022, 34(5): 229-236.
LI Z C, HU P, MA J X, et al.Analysis and prospect of offshore wind power development in China[J]. China offshore oil and gas, 2022, 34(5): 229-236.
[3] GWEC. Global wind report[R]. Brussels:GWEC, 2021: 17-21.
[4] 黄致谦, 李春, 丁勤卫, 等. 考虑到台风海况浮式风力机半潜式平台风浪流载荷动态响应及系泊性能分析[J]. 动力工程学报, 2017, 37(12): 1015-1022.
HUANG Z Q, LI C, DING Q W, et al.Dynamic response and mooring performance of a semisubmersible platform for floating wind turbine considering typhoon sea states[J]. Journal of Chinese Society of Power Engineering, 2017, 37(12): 1015-1022.
[5] 温斌荣, 田新亮, 李占伟, 等. 大型漂浮式风电装备耦合动力学研究: 历史、进展与挑战[J]. 力学进展, 2022, 52(4): 731-808.
WEN B R, TIAN X L, LI Z W, et al.Coupling dynamics of floating wind turbines: history, progress and challenges[J]. Advances in mechanics, 2022, 52(4): 731-808.
[6] 穆安乐, 张玉龙, 由艳萍, 等. 系泊参数对漂浮式风力机稳定性的影响规律研究[J]. 中国电机工程学报, 2015, 35(1): 151-158.
MU A L, ZHANG Y L, YOU Y P, et al.Study on the effects of mooring parameters on the stability of floating wind turbine[J]. Proceedings of the CSEE, 2015, 35(1): 151-158.
[7] 李辉, 刘春雷, 张伟, 等. 深水半潜式平台张紧式系泊系统优化设计[J]. 船舶工程, 2018, 40(增刊1): 287-294.
LI H, LIU C L, ZHANG W, et al.Optimal design of taut mooring system of deep-water semi-submersible platform[J]. Ship engineering, 2018, 40(S1): 287-294.
[8] 汤金桦, 李春, 叶舟, 等. 系泊参数对漂浮式风力机平台的影响研究[J]. 水资源与水工程学报, 2016, 27(1): 180-185.
TANG J H, LI C, YE Z, et al.Influence of mooring parameters on floating platform of wind turbine[J]. Journal of water resources and water engineering, 2016, 27(1): 180-185.
[9] KOO B, GOUPEE A J, LAMBRAKOS K, et al.Model tests for a floating windturbine on three different floaters[C]//Volume 7: Ocean Space Utilization; Ocean Renewable Energy. Rio de Janeiro, Brazil, 2012.
[10] JONKMAN J M,ROBERTSON A,HAY-MAN G J. HydroDyn user’s guide and theo-ry manual[R]. Golden,CO(US):National Renewable Energy Laboratory, 2014.
[11] 黄致谦, 丁勤卫, 李春, 等. 新型漂浮式风力机半潜平台抑制摇荡运动设计研究[J]. 中国电机工程学报, 2018, 38(24): 7295-7303.
HUANG Z Q, DING Q W, LI C, et al.Design and research on suppression swaying motion of the new semi-submersible platform of floating wind turbine[J]. Proceedings of the CSEE, 2018, 38(24): 7295-7303.
[12] 李蜀军, 刘青松, 李春, 等. 极端海况下附配重系泊漂浮式风力机响应分析[J]. 太阳能学报, 2022, 43(12): 415-422.
LI S J, LIU Q S, LI C, et al.Response analysis of floating wind turbine with counterweight mooring under extreme sea conditions[J]. Acta energiae solaris sinica, 2022, 43(12): 415-422.
[13] 黄心伟, 柳亦兵, 刘剑韬, 等. 海上风电机组DeepCWind平台系泊缆布置及断裂仿真分析[J]. 科学技术与工程, 2023, 23(6): 2419-2427.
HUANG X W, LIU Y B, LIU J T, et al.Mooring cable layout and fracture simulation analysis of DeepCWind platform of offshore wind turbine[J]. Science technology and engineering, 2023, 23(6): 2419-2427.
[14] ANSYS. AQWA theory manual[R]. Cano-nsburg: ANSYS, 2013.
[15] BENASSAI G, CAMPANILE A, PISCOPO V, et al.Optimization of mooring systems for floating offshore wind turbines[J]. Coastal engineering journal, 2015, 57(4): 1550021.
[16] ZAMBRANO T, MACCREADY T, KICENIUK T, et al.Dynamic modeling of deepwater offshore wind turbine structures in gulf of Mexico storm conditions[C]//25th International conference on offshore Mechanics and Arctic Engineering. Hamburg, Germany, 2006: 629-634.