单桩冲刷修复作业中流态固化土留存特性数值研究

王会丽, 毋晓妮, 李濡宇, 蒋海里, 汪潇

太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 440-445.

PDF(1544 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1544 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 440-445. DOI: 10.19912/j.0254-0096.tynxb.2023-0874

单桩冲刷修复作业中流态固化土留存特性数值研究

  • 王会丽1, 毋晓妮2,3, 李濡宇2,3, 蒋海里1, 汪潇4
作者信息 +

NUMERICAL ANALYSIS OF RETENTION CHARACTERISTICS OF FLUIDIZED SOLIDIFIED SLURRY FOR MONOPILE SCOUR REPAIR OF OFFSHORE MONOPILE FOUNDATION

  • Wang Huili1, Wu Xiaoni2,3, Li Ruyu2,3, Jiang Haili1, Wang Xiao4
Author information +
文章历史 +

摘要

固化土防冲刷技术是一种新型的冲刷修复及防护技术。为深入探究流态固化土的泵浆流失影响因素及规律,合理选择泵浆位置,该文采用计算流体力学方法对单桩基础周围流态固化土泵浆过程进行模拟,分析评估不同流态固化土和不同泵浆点对留存率的影响。结果表明,对于单桩,固化土类型和泵浆点的选择主要考虑泵浆过程中流态固化土的终末时刻留存率;建议选用流动值小的流态固化土,以提高留存率;若固化土流动值小,则尽量选单桩上游近桩触底泵浆。

Abstract

A new scour countermeasure using fluidized solidified slurry for offshore monopile foundation has been proposed re-cently. Numerical analyses using a computational fluid dynamics (CFD) approach were conducted to simulate the pumping operation around the monopile in this paper. The effects of pumping location and material property of solidi-fied slurry on the residual rate of fluidized solidified slurry were investigated. The results show that for monopile, the choice of solidified slurry and pumping location is mainly related to the final retention rate of solidified fluid soil during the pumping operation. The fluidized solidified slurry with small flow value is contributed to increasing the retention rate. If the flow value is small, the location on the upstream of monopile and near the bottom of the scour pit is optimal.

关键词

海上风电场 / 桩基础 / 计算流体力学 / 冲刷修复 / 流态固化土 / 留存特性

Key words

offshore wind farms / pile foundation / computational fluid dynamics / scour repair / fluidized solidified slurry / retention characteristics

引用本文

导出引用
王会丽, 毋晓妮, 李濡宇, 蒋海里, 汪潇. 单桩冲刷修复作业中流态固化土留存特性数值研究[J]. 太阳能学报. 2024, 45(10): 440-445 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0874
Wang Huili, Wu Xiaoni, Li Ruyu, Jiang Haili, Wang Xiao. NUMERICAL ANALYSIS OF RETENTION CHARACTERISTICS OF FLUIDIZED SOLIDIFIED SLURRY FOR MONOPILE SCOUR REPAIR OF OFFSHORE MONOPILE FOUNDATION[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 440-445 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0874
中图分类号: TU432   

参考文献

[1] 魏凯, 王顺意, 裘放, 等. 海上风电单桩基础海流局部冲刷及防护试验研究[J]. 太阳能学报, 2021, 42(9): 338-343.
WEI K, WANG S Y, QIU F, et al.Experimental study on local scour and its protection of offshore wind turbine monopile under ocean current[J]. Acta energiae solaris sinica, 2021, 42(9): 338-343.
[2] 刘润, 王迎春, 汪嘉钰, 等. 单侧冲刷对海上风电筒型基础稳定性影响研究[J]. 太阳能学报, 2022, 43(1): 73-79.
LIU R, WANG Y C, WANG J Y, et al.Research on effects of unilateral erosion on stability of offshore wind bucket foundation[J]. Acta energiae solaris sinica, 2022, 43(1): 73-79.
[3] WANG C, YU X, LIANG F Y.A review of bridge scour: mechanism, estimation, monitoring and countermeasures[J]. Natural hazards, 2017, 87(3): 1881-1906.
[4] 王玉芳, 张颖, 贺广零, 等. 海上风电基础冲刷防护措施探讨[J]. 武汉大学学报(工学版), 2020, 53(S1): 137-141.
WANG Y F, ZHANG Y, HE G L, et al.Discussion on scour protection measures of offshore wind power foundation[J]. Engineering Journal of Wuhan University, 2020, 53(S1): 137-141.
[5] 李濡宇, 毋晓妮, 陈锦剑, 等. 冲刷防护作业中流态固化土对海洋桩基作用力的数值研究[J]. 上海交通大学学报, 2023, 57(12): 1609-1618.
LI R Y, WU X N, CHEN J J, et al.Numerical analysis of force of fluidized solidified slurry in pumping for scour repair on offshore pile foundation[J]. Journal of Shanghai Jiaotong University, 2023, 57(12): 1609-1618.
[6] LI R Y, WU X N, CHEN J J.Numerical study on residual rate of fluidized solidified slurry in pumping for scour repair around monopile[J]. Ocean engineering, 2023, 276: 114072.
[7] 和庆冬, 戚建功. 一种新技术在海上风机基础冲刷防护的应用研究[J]. 南方能源建设, 2020, 7(2): 112-121.
HE Q D, QI J G.A new technology research for scour protection of offshore wind turbine foundation[J]. Southern energy construction, 2020, 7(2): 112-121.
[8] 袁建中. 固化土在海上风电单桩基础冲刷修复中的应用[J]. 中国海洋平台, 2021, 36(4): 46-50.
YUAN J Z.Application of stabilized soil in scour repair of offshore wind power single pile foundation[J]. China offshore platform, 2021, 36(4): 46-50.
[9] YIN J, HU M M, XU G Z, et al.Effect of salinity on rheological and strength properties of cement-stabilized clay minerals[J]. Marine georesources & geotechnology, 2020, 38(5): 611-620.
[10] HAZA Z F, HARAHAP I S H, DAKSSA L M. Experimental studies of the flow-front and drag forces exerted by subaqueous mudflow on inclined base[J]. Natural Hazards, 2013, 68(2): 587-611.
[11] LI R Y, CHEN J J, LIAO C C.Numerical study on interaction between submarine landslides and a monopile using CFD techniques[J]. Journal of marine science and engineering, 2021, 9(7): 736.
[12] LIN C, HAN J, BENNETT C, et al.Analysis of laterally loaded piles in sand considering scour hole dimensions[J]. Journal of geotechnical and geoenvironmental engineering, 2014, 140(6): 04014024.
[13] RICHARDSON E V, DAVIS S R.Evaluating scour at bridges[R]. United States. Federal Highway Administration. Office of Bridge Technology, 2001.
[14] ROULUND A, SUMER B M, FREDSØE J, et al. Numerical and experimental investigation of flow and scour around a circular pile[J]. Journal of fluid mechanics, 2005, 534: 351-401.
[15] 李宏伟, 王立忠, 国振, 等. 海底泥流冲击悬跨管道拖曳力系数分析[J]. 海洋工程, 2015, 33(6): 10-19.
LI H W, WANG L Z, GUO Z, et al.Drag force of submarine landslides mudflow impacting on a suspended pipeline[J]. The ocean engineering, 2015, 33(6): 10-19.

基金

国家自然科学基金(51679134); 上海市科学技术委员会项目(22DZ1208903; 20DZ2251900)

PDF(1544 KB)

Accesses

Citation

Detail

段落导航
相关文章

/