基于NREL 5 MW风力发电机原模型和简化模型,进行流固耦合和计算流体力学仿真,研究结果表明风力发电机桨距角和叶尖速比影响风轮上游来流风速演化。结合来流风速演化和推力系数理论模型表明,通过推力更新诱导系数,进而在线更新风速演化模型,能提高风速估计精度。考虑推力时变性和非定常性,提出以桨距角和叶尖速比为输入,基于RBF神经网络的推力逼近方法,进而提出基于模型在线更新的风轮平面有效风速估计方法。最后通过激光雷达现场测风数据进行验证,结果表明,基于RBF神经网络和模型在线更新的风速估计方法较基于时间信息提取算法和来流风速演化模型的风速估计方法精度提高15.5%。
Abstract
The influence of the pitch angle and tip speed ratio on wind speed evolution in the induction zone of the wind turbine incoming flow is demonstrated through fluid structure interaction and computational fluid dynamics simulation respectively, based on both the original NREL 5 MW wind turbine model and its simplified one. Combined with the theoretical model of wind speed evolution and thrust coefficient, it can be obtained that changing the induction factor in the thrust model and then updating the thrust coefficient in the wind speed evolution model online can improve the accuracy of the effective wind speed estimation. Considering the time-varying and non-stationary nature of thrust, a thrust approximation method based on RBF neural networks with the input of pitch angle and tip speed ratio is put forward. Then, an estimation method of wind turbine plane effective wind speed based on online model updating is proposed. At last, validation is conducted using on-site wind measurement data from LiDAR, and the results show that the wind speed estimation method based on RBF neural networks and model online update improves the estimation accuracy by 15.5% compared to the estimation method with time information extraction algorithm and incoming flow wind speed evolution model.
关键词
风力发电机 /
流固耦合 /
RBF神经网络 /
桨距角 /
叶尖速比 /
有效风速
Key words
wind turbines /
fluid structure interaction /
RBF neural network /
pitch angle /
tip speed ratio /
effective wind speed
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] MAHDIZADEH A, SCHMID R, OETOMO D.LIDAR-assisted exact output regulation for load mitigation in wind turbines[J]. IEEE transactions on control systems technology, 2021, 29(3): 1102-1116.
[2] SHARMA P K, WARUDKAR V, AHMED S.Application of lidar and measure correlate predict method in offshore wind resource assessments[J]. Journal of cleaner production, 2019, 215: 534-543.
[3] GAO X X, WANG T Y, LI B B, et al.Investigation of wind turbine performance coupling wake and topography effects based on LiDAR measurements and SCADA data[J]. Applied energy, 2019, 255: 113816.
[4] DIMITROV N, BORRACCINO A, PEÑA A, et al. Wind turbine load validation using LIDAR‐based wind retrievals[J]. Wind energy, 2019, 22(11): 1512-1533.
[5] MERCIECA J, ARAM P, JONES B L, et al.A spatiotemporal estimation framework for real-world LIDAR wind speed measurements[J]. IEEE transactions on control systems technology, 2020, 28(4): 1595-1602.
[6] PIELKE R A, PANOFSKY H A.Turbulence characteristics along several towers[J]. Boundary-layer meteorology, 1970, 1(2): 115-130.
[7] BRANLARD E, MEYER FORSTING A R. Assessing the blockage effect of wind turbines and wind farms using an analytical vortex model[J]. Wind energy, 2020, 23(11): 2068-2086.
[8] LI C, ABRAHAM A, LI B, et al.Incoming flow measurements of a utility-scale wind turbine using super-large-scale particle image velocimetry[J]. Journal of wind engineering and industrial aerodynamics, 2020, 197: 104074.
[9] 陈文婷, 张铂炅, 林勇刚, 等. 基于激光雷达的风力机分离测风独立变桨控制策略[J]. 太阳能学报, 2022, 43(2): 415-423.
CHEN W T, ZHANG B J, LIN Y G, et al.Separated wind measurement individual pitch control of wind turbine based on lidar[J]. Acta energiae solaris sinica, 2022, 43(2): 415-423.
[10] JIA C Z, WANG L M, MENG E L, et al.Combining LIDAR and LADRC for intelligent pitch control of wind turbines[J]. Renewable energy, 2021, 169: 1091-1105.
[11] STOCK-WILLIAMS C, MAZOYER P, COMBREXELLE S.Wind field reconstruction from lidar measurements at high-frequency using machine learning[J]. Journal of physics: conference series. IOP publishing, 2018, 1102(1): 012003.
[12] RAISSI M, PERDIKARIS P, KARNIADAKIS G E.Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of computational physics, 2019, 378: 686-707.
[13] ZHANG J C, ZHAO X W.Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR measurements[J]. Applied energy, 2021, 288: 116641.
[14] 尚海勇, 刘利强, 齐咏生, 等.基于数字孪生技术的风电机组建模研究[J]. 太阳能学报, 2023, 44(5): 391-400.
SHANG H Y, LIU L Q, QI Y S, et al.Research on wind turbine modeling based on digital twin technology[J]. Acta energiae solaris sinica, 2023, 44(5): 391-400.
[15] 王治平, 李宗刚, 陈引娟, 等. 基于RBF神经网络自适应滑模的机器鱼运动控制[J]. 兵器装备工程学报, 2023, 44(4): 224-232.
WANG Z P, LI Z G, CHEN Y J, et al.Motion control of robotic fish based on RBF neural network adaptive sliding mode[J]. Journal of ordnance equipment engineering, 2023, 44(4): 224-232.
[16] 张铂炅. 基于激光雷达的风电场智能调度策略研究[D]. 杭州: 浙江大学, 2022: 17-21.
ZHANG B J.Research on intelligent scheduling strategy of wind farm based on LIDAR[D]. Hangzhou: Zhejiang University, 2022: 17-21.
基金
国家自然科学基金青年项目(52205071); 中央引导地方科技发展专项资金(ZYYD2022C09); 流体动力与机电系统国家重点实验室开放基金课题(GZKF-202110); 先进制造成形技术及装备国家地方联合工程研究中心育苗项目