PEM水电解池渐变型流场结构的传质和性能研究

孙聪, 时焕岗, 渠吉发, 于洋, 熊永恒, 谭文轶

太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 22-29.

PDF(2169 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2169 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 22-29. DOI: 10.19912/j.0254-0096.tynxb.2023-0891

PEM水电解池渐变型流场结构的传质和性能研究

  • 孙聪1,2, 时焕岗2, 渠吉发2, 于洋2, 熊永恒2, 谭文轶2
作者信息 +

STUDY ON MASS TRANSFER AND PERFORMANCE OF GRADUAL FLOW FIELD STRUCTURE IN PEM ELECTROLYSIS CELLS

  • Sun Cong1,2, Shi Huan'gang2, Qu Jifa2, Yu Yang2, Xiong Yongheng2, Tan Wenyi2
Author information +
文章历史 +

摘要

传统质子交换膜(PEM)水电解池的平行、蛇形等流场由于传质不佳导致电性能下降。针对于此,该研究提出一种渐变型流场,通过数值模拟的方法,比较正、反向进水(分别记作渐变Ⅰ型、渐变Ⅱ型)两个条件下,流场内流速、压力、气体分布以及电流密度分布变化,并与平行、蛇形流场对比。结果表明,渐变Ⅰ型流场的压降仅次于平行流场,具有较高的流速且也能够有效快速排出气体,平均电流密度高于蛇形流场8%,高于平行流场4%。采用渐变Ⅰ型流场的质子交换膜水电解池具有更优的电性能。

Abstract

The parallel and serpentine flow fields of the traditional proton exchange membrane (PEM) electrolysis cells have poor electrical performance, due to weak mass transfer. In view of this, this paper proposed a gradually-varied flow field. The changes of flow velocity, pressure, gas distribution and current density distribution in the flow field under different inflow directions (denoted as gradual Ⅰ-type and gradual Ⅱ-type, respectively) were compared by numerical simulation. The results show that the pressure drop of the gradual Ⅰ-type flow field is second only to the parallel flow field, which has a higher flow velocity and can also effectively and rapidly discharge gas. The average current density achieved by gradual Ⅰ-type flow field is 8% higher than that of the serpentine and 4% higher than that of the parallel. The PEM electrolysis cells with gradual Ⅰ-type flow field has better electrical performance.

关键词

制氢 / 电解池 / 数值模拟 / 流场 / 传质

Key words

hydrogen production / electrolytic cells / numerical simulation / flow fields / mass transfer

引用本文

导出引用
孙聪, 时焕岗, 渠吉发, 于洋, 熊永恒, 谭文轶. PEM水电解池渐变型流场结构的传质和性能研究[J]. 太阳能学报. 2024, 45(10): 22-29 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0891
Sun Cong, Shi Huan'gang, Qu Jifa, Yu Yang, Xiong Yongheng, Tan Wenyi. STUDY ON MASS TRANSFER AND PERFORMANCE OF GRADUAL FLOW FIELD STRUCTURE IN PEM ELECTROLYSIS CELLS[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 22-29 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0891
中图分类号: TM911   

参考文献

[1] 张诚, 檀志恒, 晁怀颇. “双碳”背景下数据中心氢能应用的可行性研究[J]. 太阳能学报, 2022, 43(6): 327-334.
ZHANG C, TAN Z H, CHAO H P.Feasibility study of hydrogen energy application on data center under“carbon peaking and neutralization”background[J]. Acta energiae solaris sinica, 2022, 43(6): 327-334.
[2] AMORES E, SÁNCHEZ M, ROJAS N, et al. Renewable hydrogen production by water electrolysis[M]. Sustainable fuel technologies handbook. Amsterdam: Elsevier, 2021: 271-313.
[3] 俞红梅, 衣宝廉. 电解制氢与氢储能[J]. 中国工程科学, 2018, 20(3): 58-65.
YU H M, YI B L.Hydrogen for energy storage and hydrogen production from electrolysis[J]. Strategic study of CAE, 2018, 20(3): 58-65.
[4] MIDILLI A, DINCER I.Key strategies of hydrogen energy systems for sustainability[J]. International journal of hydrogen energy, 2007, 32(5): 511-524.
[5] DINCER I, ACAR C.Review and evaluation of hydrogen production methods for better sustainability[J]. International journal of hydrogen energy, 2015, 40(34): 11094-11111.
[6] MILLET P, DRAGOE D, GRIGORIEV S, et al.GenHyPEM: a research program on PEM water electrolysis supported by the European Commission[J]. International journal of hydrogen energy, 2009, 34(11): 4974-4982.
[7] MILLET P, MBEMBA N, GRIGORIEV S A, et al.Electrochemical performances of PEM water electrolysis cells and perspectives[J]. International journal of hydrogen energy, 2011, 36(6): 4134-4142.
[8] 马晓锋, 张舒涵, 何勇, 等. PEM电解水制氢技术的研究现状与应用展望[J]. 太阳能学报, 2022, 43(6): 420-427.
MA X F, ZHANG S H, HE Y, et al.Research status and application prospect of PEM electrolysis water technology for hydrogen production[J]. Acta energiae solaris sinica, 2022, 43(6): 420-427.
[9] SUN J, LIU B C, ZHENG M L, et al.Serpentine flow field with changing rib width for enhancing electrolyte penetration uniformity in redox flow batteries[J]. Journal of energy storage, 2022, 49: 104135.
[10] NIE J H, CHEN Y.Numerical modeling of three-dimensional two-phase gas-liquid flow in the flow field plate of a PEM electrolysis cell[J]. International journal of hydrogen energy, 2010, 35(8): 3183-3197.
[11] NIE J H, CHEN Y, COHEN S, et al.Numerical and experimental study of three-dimensional fluid flow in the bipolar plate of a PEM electrolysis cell[J]. International journal of thermal sciences, 2009, 48(10): 1914-1922.
[12] TOGHYANI S, AFSHARI E, BANIASADI E,et al.Thermal and electrochemical analysis of different flow field patterns in a PEM electrolyzer[J]. Electrochimica acta, 2018, 267: 234-245.
[13] TOGHYANI S, AFSHARI E, BANIASADI E.Metal foams as flow distributors in comparison with serpentine and parallel flow fields in proton exchange membrane electrolyzer cells[J]. Electrochimica acta, 2018, 290: 506-519.
[14] 郑金松, 莫景科. PEM水电解池反应特性参数的三维模型数值模拟[J]. 电源技术, 2021, 45(11): 1401-1404, 1504.
ZHENG J S, MO J K.Three-dimensional modeling of the reaction characteristic parameters of PEM electrolysis cells[J]. Chinese journal of power sources, 2021, 45(11): 1401-1404, 1504.
[15] HAN B, MO J K, KANG Z Y, et al.Modeling of two-phase transport in proton exchange membrane electrolyzer cells for hydrogen energy[J]. International journal of hydrogen energy, 2017, 42(7): 4478-4489.
[16] MA Z W, WITTEMAN L, WRUBEL J A, et al.A comprehensive modeling method for proton exchange membrane electrolyzer development[J]. International journal of hydrogen energy, 2021, 46(34): 17627-17643.
[17] HANSEN M K, AILI D, CHRISTENSEN E,et al.PEM steam electrolysis at 130 ℃ using a phosphoric acid doped short side chain PFSA membrane[J]. International journal of hydrogen energy, 2012, 37(15): 10992-11000.
[18] BARRERAS F, LOZANO A, VALIÑO L, et al. Fluid dynamics performance of different bipolar plates[J]. Journal of power sources, 2008, 175(2): 841-850.
[19] LIN R, LU Y, XU J, et al.Investigation on performance of proton exchange membrane electrolyzer with different flow field structures[J]. Applied energy, 2022, 326: 120011.
[20] 赵孝保. 工程流体力学[M]. 3版. 南京: 东南大学出版社, 2012.
ZHAO X B.Engineering fluid mechanics[M]. 3rd ed. Nanjing: Southeast University Press, 2012.
[21] ITO H, MAEDA T, NAKANO A, et al.Effect of flow regime of circulating water on a proton exchange membrane electrolyzer[J]. International journal of hydrogen energy, 2010, 35(18): 9550-9560.
[22] MAJASAN J O, CHO J I S, DEDIGAMA I, et al. Two-phase flow behaviour and performance of polymer electrolyte membrane electrolysers: Electrochemical and optical characterisation[J]. International journal of hydrogen energy, 2018, 43(33): 15659-15672.
[23] DEDIGAMA I, ANGELI P, AYERS K, et al.In situ diagnostic techniques for characterisation of polymer electrolyte membrane water electrolysers-flow visualisation and electrochemical impedance spectroscopy[J]. International journal of hydrogen energy, 2014, 39(9): 4468-4482.
[24] ZHANG T Y, CAO Y P, ZHANG Y P, et al.Relationship of local current and two-phase flow in proton exchange membrane electrolyzer cells[J]. Journal of power sources, 2022,542: 231742.
[25] DEDIGAMA I, ANGELI P, VAN DIJK N, et al.Current density mapping and optical flow visualisation of a polymer electrolyte membrane water electrolyser[J]. Journal of power sources, 2014, 265: 97-103.

基金

国家自然科学基金面上项目(51678291); 江苏省高等学校基础科学研究重大项目(23KJA610003)

PDF(2169 KB)

Accesses

Citation

Detail

段落导航
相关文章

/