基于多级特征提取的BiLSTM短期光伏出力预测

林文婷, 李培强, 荆志宇, 钟吴君

太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 284-297.

PDF(6882 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(6882 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 284-297. DOI: 10.19912/j.0254-0096.tynxb.2023-0894

基于多级特征提取的BiLSTM短期光伏出力预测

  • 林文婷1,2, 李培强3, 荆志宇1,2, 钟吴君3
作者信息 +

SHORT-TERM PHOTOVOLTAIC OUTPUT PREDICTION BASED ON MULTI-LEVEL FEATURE EXTRACTION USING BILSTM

  • Lin Wenting1,2, Li Peiqiang3, Jing Zhiyu1,2, Zhong Wujun3
Author information +
文章历史 +

摘要

传统光伏预测模型易受气象数据波动的影响,且对气象特征不敏感。由此,提出基于多级特征提取的BiLSTM短期光伏出力预测方法,用于预测不同天气类型下的光伏出力。首先,选取与光伏出力相关性较高的气象因素作为输入特征;使用模糊C均值(FCM)聚类方法,对样本进行灵活划分,通过计算Xie-Beni指标以确定最佳聚类数,将历史数据集聚类为晴天、少云天、晴转多云、阴雨天和恶劣天气;其次,构建CNN-CBAM-TCN多级特征提取器(MFE):利用卷积神经网络(CNN)进行初步的特征提取,结合卷积注意力块(CBAM)抑制非重要特征,之后,利用时间卷积网络(TCN)进一步捕捉日内光伏出力的时序特征;最后,借助双向长短期记忆网络(BiLSTM)进行光伏出力预测。在实例分析中,验证了使用Xie-Beni指标确定最佳聚类数的有效性,证明了该模型较其他预测模型在复杂天气类型下具有更高预测精度。

Abstract

Traditional photovoltaic (PV) prediction models are highly susceptible to fluctuations in meteorological data and exhibit low sensitivity to meteorological features. To address this, we propose a short-term PV output prediction method based on multi-level feature extraction using bi-directional long short-term memory (BiLSTM), aimed at predicting PV output under various weather conditions. Firstly, meteorological factors with high correlation to PV output are selected as input features. The fuzzy C-means (FCM) clustering method is used for flexible sample division, and the Xie-Beni index is calculated to determine the optimal number of clusters, categorizing historical data into sunny, partly cloudy, cloudy, rainy, and severe weather conditions. Next, a multi-level feature extractor (MFE) comprising CNN-CBAM-TCN is constructed: convolutional neural networks (CNN) are employed for initial feature extraction, convolutional block attention module (CBAM) is used to suppress non-essential features, and temporal convolutional networks (TCN) are utilized to capture the temporal characteristics of intra-day PV output. Finally, BiLSTM is used for PV output prediction. Case studies validate the effectiveness of using the Xie-Beni index to determine the optimal number of clusters and demonstrate that this model achieves higher prediction accuracy compared to other prediction models under complex weather conditions.

关键词

短期光伏出力预测 / 双向长短期记忆网络 / 卷积注意力块 / 时间卷积网络 / 模糊C均值聚类 / Xie-Beni指标

Key words

short term photovoltaic output prediction / bi-directional short-term memory network / convolutional attention blocks / time convolutional network / fuzzy C-means clustering / Xie-Beni index

引用本文

导出引用
林文婷, 李培强, 荆志宇, 钟吴君. 基于多级特征提取的BiLSTM短期光伏出力预测[J]. 太阳能学报. 2024, 45(10): 284-297 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0894
Lin Wenting, Li Peiqiang, Jing Zhiyu, Zhong Wujun. SHORT-TERM PHOTOVOLTAIC OUTPUT PREDICTION BASED ON MULTI-LEVEL FEATURE EXTRACTION USING BILSTM[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 284-297 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0894
中图分类号: TM615   

参考文献

[1] 董存, 王铮, 白捷予, 等. 光伏发电功率超短期预测方法综述[J]. 高电压技术, 2023, 49(7): 2938-2951.
DONG C, WANG Z, BAI J Y, et al.Review of ultra-short-term forecasting methods for photovoltaic power generation[J]. High voltage engineering, 2023, 49(7): 2938-2951.
[2] 吕伟杰, 方一帆, 程泽. 基于模糊C均值聚类和样本加权卷积神经网络的日前光伏出力预测研究[J]. 电网技术, 2022, 46(1): 231-238.
LYU W J, FANG Y F, CHENG Z.Prediction of day-ahead photovoltaic output based on FCM-WS-CNN[J]. Power system technology, 2022, 46(1): 231-238.
[3] MILAD H S A, FAROOQ U, EL-HAWARY M E, et al. Neo-fuzzy integrated adaptive decayed brain emotional learning network for online time series prediction[J]. IEEE access, 1037, 5: 1037-1049.
[4] 刘卫亮, 刘长良, 林永君, 等. 计及雾霾影响因素的光伏发电超短期功率预测[J].中国电机工程学报, 2018, 38(14): 4086-4095.
LIU W L, LIU C L, LIN Y J, et al.Super short-term photovoltaic power forecasting considering influence factor of smog[J]. Proceedings of the CSEE, 2018, 38(14): 4086-4095.
[5] 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaris sinica, 2022, 43(12): 88-97.
[6] 赵泽妮, 云斯宁, 贾凌云, 等.基于统计模型的短期风能预测方法研究进展[J]. 太阳能学报, 2022, 43(11): 224-234.
ZHAO Z N, YUN S N, JIA L Y, et al.Recent progress in short-term forecasting of wind energy based on statistical models[J]. Acta energiae solaris sinica, 2022, 43(11): 224-234.
[7] MANDAL P, MADHIRA S T S, HAQUE A U, et al. Forecasting power output of solar photovoltaic system using wavelet transform and artificial intelligence techniques[J]. Procedia computer science, 2012, 12(1): 332-337.
[8] CHEN Y F, WEN M, ZHANG K, et al.Short term photovoltaic output forecasting based on similar day matching and TCN-attention[J]. Electrical measurement & instrumentation, 2022, 59(10): 108-116.
[9] SUN Z H, JIANG Z H, LIU Y L, et al.Photovoltaic power prediction based on wavelet transform and optimized Elman neural network[J]. Power system and clean energy, 2022, 38(6): 98-103, 112.
[10] 刘丹, 刘方, 许彦平. 基于MIV-PSO-BPNN的光伏出力短期预测[J]. 太阳能学报, 2022, 43(6): 94-98.
LIU D, LIU F, XU Y P.Short-term photovoltaic power forecasting based on MIV-PSO-BPNN model[J]. Acta energiae solaris sinica, 2022, 43(6): 94-98.
[11] YUAN J H, XIE B B, HE B L, et al.Short term forecasting method of photovoltaic output based on DTW-VMD-PSO-BP[J]. Acta energiae solaris sinica, 2022, 43(8): 58-66.
[12] ZHU R J, GONG X J, ZHANG J J.Forecast of photovoltaic power generation based on EEMD-MPE-LSSVM[J]. China measurement & test, 2021, 47(9): 158-162.
[13] WANG S, KUI L F, ZENG L.A combined model for photovoltaic power forecasting based on GWO-SVM and random forest[J]. Journal of Kunming University of Science and Technology (natural science edition), 2021, 46(5): 82-88.
[14] 王继拓, 王万成, 陈宏伟. 基于回归-马尔科夫链的光伏发电功率预测[J]. 电测与仪表, 2019, 56(1): 76-81.
WANG J T, WANG W C, CHEN H W.Photovoltaic power generation forecasting based on regression-Markov chain[J]. Electrical measurement & instrumentation, 2019, 56(1): 76-81.
[15] 王福忠, 王帅峰, 张丽. 基于VMD-LSTM与误差补偿的光伏发电超短期功率预测[J]. 太阳能学报, 2022, 43(8): 96-103.
WANG F Z, WANG S F, ZHANG L.Ultra short-term power prediction of photovoltaic power generation based on VMD-LSTM and error compensation[J]. Acta energiae solaris sinica, 2022, 43(8): 96-103.
[16] 谭海旺, 杨启亮, 邢建春, 等. 基于XGBoost-LSTM组合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(8): 75-81.
TAN H W, YANG Q L, XING J C, et al.Photovoltaic power prediction based on combined XGBoost-LSTM model[J]. Acta energiae solaris sinica, 2022, 43(8): 75-81.
[17] MA L, HUANG W, LI K C, et al.Photovoltaic ultra-short-term power prediction model based on attention-LSTM[J]. Electrical measurement & instrumentation, 2021, 58(2): 146-152.
[18] 汤德清, 朱武, 侯林超. 基于CNN-LSTM-XGBoost模型的超短期光伏功率预测[J]. 电源技术, 2022, 46(9): 1048-1052.
TANG D Q, ZHU W, HOU L C.Ultra-short-term photovoltaic power prediction based on CNN-LSTM-XGBoost model[J]. Chinese journal of power sources, 2022, 46(9): 1048-1052.
[19] 王俊杰, 毕利, 张凯, 等. 基于多特征融合和XGBoost-LightGBM-ConvLSTM的短期光伏发电量预测[J]. 太阳能学报, 2023, 44(7): 168-174.
WANG J J, BI L, ZHANG K, et al.Short-term photovoltaic generation prediction based on multi-feature fusion and XGBoost-LightGBM-ConvLSTM[J]. Acta energiae solaris sinica, 2023, 44(7): 168-174.
[20] 王开艳, 杜浩东, 贾嵘, 等. 基于相似日聚类和QR-CNN-BiLSTM模型的光伏功率短期区间概率预测[J]. 高电压技术, 2022, 48(11): 4372-4388.
WANG K Y, DU H D, JIA R, et al.Short-term interval probability prediction of photovoltaic power based on similar daily clustering and QR-CNN-BiLSTM model[J]. High voltage engineering, 2022, 48(11): 4372-4388.
[21] LIU Y J, CHEN Y L, LIU J Y, et al.Ensemble learning-based day-ahead power forecasting of distributed photovoltaic generation[J]. Electric power, 2022, 55(9): 38-45.
[22] LI Z M, BAO S Q, GAO Z.Short term prediction of photovoltaic power based on FCM and CG-DBN combination[J]. Journal of electrical engineering & technology, 2019, 15: 333-341.
[23] 陈甜甜, 高亚静, 卢占会. 基于双尺度度量的改进模糊均值曲线聚类方法研究[J]. 综合智慧能源, 2022(4): 1-11.
CHEN T T, GAO Y J, LU Z H.Research on improved fuzzy mean curve clustering method based on two-scale measurement[J]. Integrated intelligent energy, 2022(4): 1-11.
[24] 毕贵红, 赵鑫, 陈臣鹏, 等. 基于多通道输入和PCNN-BiLSTM的光伏发电功率超短期预测[J]. 电网技术, 2022, 46(9): 3463-3476.
BI G H, ZHAO X, CHEN C P, et al.Ultra-short-term prediction of photovoltaic power generation based on multi-channel input and PCNN-BiLSTM[J]. Power system technology, 2022, 46(9): 3463-3476.
[25] ZHAO J M, GUAN G Q, WANG H Y.Improvement of clustering algorithms based on genetic algorithms[J]. Computer engineering and applications, 2008, 164(8): 83-85.
[26] ZHOU S B, XU Z Y, TANG X Q.New method for determining optimal number of clusters in K-means clustering algorithm[J]. Computer engineering and applications, 2010, 46(16): 27-31.
[27] WOO S, PARK J, LEE J Y, et al.CBAM: convolutional block attention module[C]//European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[28] 张家安, 郝峰, 董存, 等. 基于两阶段不确定性量化的光伏发电超短期功率预测[J]. 太阳能学报, 2023, 44(1): 69-77.
ZHANG J A, HAO F, DONG C, et al.Ultra-short-term power forecasting of photovoltaic power generation based on two-stage uncertainty quantization[J]. Acta energiae solaris sinica, 2023, 44(1): 69-77.

基金

国家重点研发计划(2021YFB2601504)

PDF(6882 KB)

Accesses

Citation

Detail

段落导航
相关文章

/