涡激运动问题是影响漂浮式结构系泊系统、立管和电缆疲劳寿命的重要因素,该文利用主动控制技术研究合成射流对Spar型浮式风力机基础结构涡激响应特性的抑制规律。首先开展无射流工况下Spar型浮式风力机涡激运动试验和数值仿真研究,验证数值方法的准确性,而后重点探讨射速比和喷射角对结构的涡激响应、涡激力、泄涡频率和尾涡结构的影响规律。研究发现,涡激响应特征与射速比和喷射角度密切相关,合成射流能有效抑制结构的涡激运动,且射速比越大、喷射角越趋向尾涡分离点其抑制效果越好。同时发现,合成射流降低了涡泄频率、从而使振荡频率远离固有频率,但柱体涡激力基本不变。结果表明,合成射流能够有效抑制Spar型浮式风力机的涡激共振,其抑制机理为降低结构振荡频率,从而解锁涡激共振实现抑制作用,而非降低涡激力实现抑制效果。
Abstract
Vortex-induced motion(VIM) problem is one of the important factors causing fatigue damage in the mooring systems and cables of floating offshore wind turbines(FOWT). The present work studies the suppression law of synthetic jet on the VIM of the Spar-type floating offshore wind turbine(FOWT) through an active control technology. The influences of the jet velocity ratio (γIR, jet velocity ratio to incoming flow velocity) and injection angle φ on the vortex-induced response, vortex-induced force, vortex shedding frequency and vortex structure are researched. It is found that the characteristics of vortex-induced response are closely related to the γIR and φ. Synthetic jets can effectively suppress the VIM of structures, and more specifically, the larger the γIR and the closer φ approaches the separation point, the better suppressing effective will behave. It is also found that the γIR reduces the frequency of vortex shedding, thereby keeping the oscillation frequency away from the natural frequency. The results show that the synthetic jet can effectively suppress the vortex-induced resonance of the Spar-type FOWT. The suppression mechanism is to unlock the vortex-induced resonance to achieve the suppression effect by reducing the frequency oscillation, rather than reducing the vortex-induced force.
关键词
海上浮式风力机 /
动力特性 /
圆柱 /
合成射流 /
主动控制
Key words
offshore wind turbines /
dynamic characteristics /
circular cylinders /
synthetic jets /
active control
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 唐征歧, 周彬, 王凯. 海上风电发展及其技术研究概述[J]. 太阳能, 2018(6): 11-16, 48.
TANG Z Q, ZHOU B, WANG K.Review of development of offshore wind power and its technology research[J]. Solar energy, 2018(6): 11-16, 48.
[2] 盛景, 桑松, 曹爱霞, 等. SPAR型浮式风力机涡激特性研究及系缆疲劳评估[J]. 太阳能学报, 2019, 40(10): 2979-2985.
SHENG J, SANG S, CAO A X, et al.Vortex induced characteristics of spar type floating wind turbine and fatigue assessment of mooring system[J]. Acta energiae solaris sinica, 2019, 40(10): 2979-2985.
[3] YIN D C, PASSANO E, JIANG F, et al.State-of-the-art review of vortex-induced motions of floating offshore wind turbine structures[J]. Journal of marine science and engineering, 2022, 10(8): 1-29.
[4] WU H, SUN D P, LU L, et al.Experimental investigation on the suppression of vortex-induced vibration of long flexible riser by multiple control rods[J]. Journal of fluids and structures, 2012, 30: 115-132.
[5] GAO D, MENG H, HUANG Y W, et al.Active flow control of the dynamic wake behind a square cylinder using combined jets at the front and rear stagnation points[J]. Physics of fluids, 2021, 33: 047101.
[6] NARENDRAN K, JAIMAN R K.Effect of near-wake jet on the lock-in of a freely vibrating square cylinder[J]. Physics of fluids, 2019, 31(5): 053603.
[7] WANG C L, TANG H, DUAN F, et al.Control of wakes and vortex-induced vibrations of a single circular cylinder using synthetic jets[J]. Journal of fluids and structures, 2016, 60: 160-179.
[8] 丁林, 杨林, 王海博, 等. 合成射流对圆柱绕流流固耦合特性影响分析[J]. 航空动力学报, 2019, 34(12): 2529-2538.
DING L, YANG L, WANG H B, et al.Analysis of effect of synthetic jet on fluid-solid coupling characteristics around cylinder[J]. Journal of aerospace power, 2019, 34(12): 2529-2538.
[9] KARTHIKEYAN S, SENTHILKUMAR S, KANNAN B T, et al.Numerical analysis on effect of jet injection on vortex shedding for flow over a circular cylinder[J]. Arabian journal for science and engineering, 2019, 44(2): 1475-1488.
[10] LIU Y, LI P, WANG Y, et al.Experimental investigation on the vortex-induced vibration of the vertical riser fitted with the water jetting active vibration suppression device[J]. International journal of mechanical sciences, 2020, 177: 105600.
[11] SHUR M L, SPALART P R, STRELETS M K, et al.A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International journal of heat and fluid flow, 2008, 29(6): 1638-1649.
[12] 李磊, 肖阳宏, 徐鹏, 等. 分离盘对Spar型浮式风力机涡激运动抑制特性的试验与数值研究[J]. 太阳能学报, 2024, 45(2): 181-188.
LI L, XIAO Y H, XU P, et al.Experimental and numerical study of suppression effect of splitter plate on vortex-induced motions of Spar-type floating offshore wind turbine[J]. Acta energiae solaris sinica, 2024, 45(2): 181-188.
[13] 孙洪源, 黄维平, 李磊, 等. Spar型浮式风电基础结构涡激运动实验研究[J]. 太阳能学报, 2017, 38(12): 3412-3418.
SUN H Y, HUANG W P, LI L, et al.Experimental study of vortex induced motion of Spar-type floating support structure for wind turbine[J]. Acta energiae solaris sinica, 2017, 38(12): 3412-3418.
基金
浙江省教育厅一般科研项目(Y202250602); 浙江省自然科学联合基金(LHZ21E090003); 国家自然科学青年基金(52101330)