基于周期注意力机制的中长期光伏发电功率预测

张研, 景超, 王慧民, 张佳, 张兴忠

太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 298-308.

PDF(1203 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1203 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 298-308. DOI: 10.19912/j.0254-0096.tynxb.2023-0899

基于周期注意力机制的中长期光伏发电功率预测

  • 张研1, 景超2,3, 王慧民3, 张佳3, 张兴忠1
作者信息 +

MEDIUM AND LONG TERM PHOTOVOLTAIC POWER PREDICTION BASED ON PERIODIC ATTENTION MECHANISM

  • Zhang Yan1, Jing Chao2,3, Wang Huimin3, Zhang Jia3, Zhang Xingzhong1
Author information +
文章历史 +

摘要

针对自注意力机制难以捕获光伏发电功率序列中潜在的周期信息的问题,提出一种基于周期注意力机制的光伏发电功率预测模型Periodformer。首先利用周期切片与嵌入模块对原始序列进行频域变换得到其潜在周期,并按照潜在周期对序列切片、堆叠、得到一系列3D序列块;其次在编码阶段提出周期增强模块捕获序列子周期间和周期内的特征;最后在解码阶段提出周期交叉注意力模块对每个3D序列块分别进行预测,将各3D序列块的预测结果卷积融合得到预测结果。实验分析证明,所提模型能够很好地捕捉到周期内和周期间的潜在特征,具有较高的预测性能;在中长期光伏发电功率预测任务上相较基准模型仍能保持较好的效果。

Abstract

In order to solve the problem that the self-attention mechanism is difficult to capture the potential periodic information in the photovoltaic power sequence, a photovoltaic power prediction model Periodformer based on periodic attention mechanism is proposed. Firstly, the potential period of the original sequence is obtained by frequency domain transformation of the period slice and embedding module, and a series of 3D sequence blocks are obtained by slicing and stacking according to the potential period. Secondly, in the oncoding stage, a period strength block is proposed to capture the features during and within the sub-cycle of the sequence. Finally, in the decoding stage, a period cross-attention module is proposed to predict each 3D sequence block respectively, and the prediction results are convoluted and fused to get the prediction results. Experimental analysis shows that the proposed model can well capture the potential characteristics during and within cycles, and has higher prediction performance, and can still maintain a better effect compared with the benchmark model in the medium-and long-term photovoltaic power prediction task.

关键词

光伏发电 / 可再生能源 / 功率预测 / 神经网络 / 注意力机制

Key words

PV power / renewable energy / power forecasting / neural networks / attention mechanism

引用本文

导出引用
张研, 景超, 王慧民, 张佳, 张兴忠. 基于周期注意力机制的中长期光伏发电功率预测[J]. 太阳能学报. 2024, 45(10): 298-308 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0899
Zhang Yan, Jing Chao, Wang Huimin, Zhang Jia, Zhang Xingzhong. MEDIUM AND LONG TERM PHOTOVOLTAIC POWER PREDICTION BASED ON PERIODIC ATTENTION MECHANISM[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 298-308 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0899
中图分类号: TK519    TP399   

参考文献

[1] 邹才能, 陈艳鹏, 熊波, 等. 碳中和目标下中国新能源使命[J]. 中国科学院院刊, 2023, 38(1): 48-58.
ZOU C N, CHEN Y P, XIONG B, et al.Mission of new energy under carbon neutrality goal in China[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(1): 48-58.
[2] 张珍珍, 吕清泉, 张健美. “双碳” 目标下分布式光伏发电技术的研究进展及展望[J]. 太阳能, 2023(1): 17-21.
ZHANG Z Z, LYU Q Q, ZHANG J M.Research progress and prospect of distributed PV power generation technology under the goal of emission peak and carbon neutrality[J]. Solar energy, 2023(1): 17-21.
[3] 仇琦, 杨兰, 丁旭, 等. 基于改进EMD-ARIMA的光伏发电系统短期功率预测[J]. 电力科学与工程, 2020, 36(8): 42-50.
QIU Q, YANG L, DING X, et al.An improved short-term power prediction method of PV power generation system based on EMD-ARIMA model[J]. Electric power science and engineering, 2020, 36(8): 42-50.
[4] 朱琼锋, 李家腾, 乔骥, 等. 人工智能技术在新能源功率预测的应用及展望[J]. 中国电机工程学报, 2023, 43(8): 3027-3048.
ZHU Q F, LI J T, QIAO J, et al.Application and prospect of artificial intelligence technology in renewable energy forecasting[J]. Proceedings of the CSEE, 2023, 43(8): 3027-3048.
[5] 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaris sinica, 2022, 43(12): 88-97.
[6] 谭海旺, 杨启亮, 邢建春, 等. 基于XGBoost-LSTM组合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(8): 75-81.
TAN H W, YANG Q L, XING J C, et al.Photovoltaic power prediction based on combined XGBoost-LSTM model[J]. Acta energiae solaris sinica, 2022, 43(8): 75-81.
[7] 孙庆凯, 王小君, 张义志, 等. 基于LSTM和多任务学习的综合能源系统多元负荷预测[J]. 电力系统自动化, 2021, 45(5): 63-70.
SUN Q K, WANG X J, ZHANG Y Z, et al.Multiple load prediction of integrated energy system based on long short-term memory and multi-task learning[J]. Automation of electric power systems, 2021, 45(5): 63-70.
[8] 樊磊, 张倩, 李国丽, 等. 基于长短期记忆网络数字孪生体的短期光伏发电预测[J]. 现代电力, 2023, 40(6): 899-905.
FAN L, ZHANG Q, LI G L, et al.Short-term photovoltaic power generation prediction based on LSTM digital twins[J]. Modern electric power, 2023, 40(6): 899-905.
[9] WEN Q, ZHOU T, ZHANG C, et al.Transformers in time series: a survey[C]//International Joint Conference on Artificial Intelligence. Macao, China, 2023.
[10] GRIGSBY J, WANG Z, NGUYEN N, et al.Long-range transformers for dynamic spatiotemporal forecasting[J]. arXiv e-prints, 2021: arXiv: 2109.12218.
[11] ZHANG Y H, YAN J C.Crossformer: transformer utilizing cross-dimension dependency for multivariate time series forecasting[C]//International Conference on Learning Representations. Kigali, Rwanda, 2023.
[12] 刘世鹏, 宁德军, 马崛. 针对光伏发电功率预测的LSTformer模型[J]. 计算机工程与应用, 2024(9): 317-325.
LIU S P, NING D J, MA J.LSTformer model for photovoltaic power prediction[J]. Computer engineering and applications, 2024(9): 317-325.
[13] ZHOU H, ZHANG S, PENG J, et al.Informer: beyond efficient transformer for long sequence time-series forecasting[C]//Association for the Advancement of Artificial Intelligence. Vancouver, Canada, 2021.
[14] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[J]. Advances in neural information processing systems, 2017: 5998-6008.
[15] 文立, 钟永. 光伏发电功率预测中数据预处理方法[J]. 中国科技信息, 2022(19): 132-134.
WEN L, ZHONG Y.Data preprocessing method in photovoltaic power prediction[J]. China science and technology information, 2022(19): 132-134.

PDF(1203 KB)

Accesses

Citation

Detail

段落导航
相关文章

/