漂浮式海上风电机组无模型自适应容错控制策略

张艳峰, 杨锡运, 徐恩慧

太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 467-477.

PDF(1806 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1806 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 467-477. DOI: 10.19912/j.0254-0096.tynxb.2023-0906

漂浮式海上风电机组无模型自适应容错控制策略

  • 张艳峰1, 杨锡运1, 徐恩慧2
作者信息 +

MODEL-FREE ADAPTIVE FAULT-TOLERANT CONTROL STRATEGY FOR FLOATING OFFSHORE WIND TURBINES

  • Zhang Yanfeng1, Yang Xiyun1, Xu Enhui2
Author information +
文章历史 +

摘要

漂浮平台运动和海上恶劣条件使得漂浮式海上风电机组(FOWT)建模难度大且故障率较高,为此,提出一种无需对FOWT进行数学建模的无模型自适应主动容错控制策略。该策略主要包括故障智能诊断和故障自适应补偿系统:故障智能诊断系统利用卷积神经网络模型对时序信号进行空间特征挖掘完成故障智能诊断;故障补偿系统采用无模型自适应控制策略实现,将动态补偿过程转化为非线性系统实时控制问题,通过实时求解补偿因子来应对和恢复多种故障,有效降低了控制器开发成本且避免了建模产生的误差。在多种故障场景下进行仿真实验,结果验证了提出控制策略的容错能力,不仅可使叶轮载荷保持平衡,且可降低塔筒载荷。

Abstract

To address the challenges posed by the complex modeling and high failure rates caused by the motion of floating platforms and harsh offshore conditions in floating offshore wind turbines (FOWT), a model-free adaptive active fault-tolerant control strategy is proposed, eliminating the need for mathematical modeling of FOWT. The strategy consists of a fault intelligent diagnosis system and a fault adaptive compensation system. The fault intelligent diagnosis system employs a convolutional neural network model to extract spatial features from time-series signals, completing intelligent fault diagnosis. The fault compensation system utilizes a model-free adaptive control strategy, converting the dynamic compensation process into a real-time control problem of a nonlinear system. It achieves this by solving compensation factors in real-time to handle and recover from various faults. This approach effectively reduces controller development costs and avoids modeling errors. Simulation experiments are conducted under multiple fault scenarios, validating the fault-tolerant capability of the proposed control strategy. It not only maintains a balanced load on the rotor blades but also reduces tower loads.

关键词

海上风电 / 风电机组 / 独立变桨控制 / 容错控制 / 无模型自适应控制

Key words

offshore wind power / wind turbines / individual pitch control / fault-tolerant control / model-free adaptive control

引用本文

导出引用
张艳峰, 杨锡运, 徐恩慧. 漂浮式海上风电机组无模型自适应容错控制策略[J]. 太阳能学报. 2024, 45(10): 467-477 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0906
Zhang Yanfeng, Yang Xiyun, Xu Enhui. MODEL-FREE ADAPTIVE FAULT-TOLERANT CONTROL STRATEGY FOR FLOATING OFFSHORE WIND TURBINES[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 467-477 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0906
中图分类号: TM614   

参考文献

[1] 张萍, 杨晓磊, 张国峰, 等. 基于AO-ESN的海上风电机组接地电阻预测[J]. 太阳能学报, 2023, 44(5): 480-486.
ZHANG P, YANG X L, ZHANG G F, et al.Prediction of impact resistance of offshore wind turbine based on AO-ESN[J]. Acta energiae solaris sinica, 2023, 44(5): 480-486.
[2] 宋子秋, 冯翰宇, 余照国, 等. 基于模型预测控制的半潜漂浮式风机协调控制方法研究[J]. 中国电机工程学报, 2022, 42(12): 4330-4339.
SONG Z Q, FENG H Y, YU Z G, et al.Coordinated control of semi-submersible floating turbine with model predictive control strategy[J]. Proceedings of the CSEE, 2022, 42(12): 4330-4339.
[3] CHO S, GAO Z, MOAN T.Model-based fault detection, fault isolation and fault-tolerant control of a blade pitch system in floating wind turbines[J]. Renewable energy, 2018, 120: 306-321.
[4] TRUONG H V A, DANG T D, VO C P, et al. Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: a review[J]. Renewable and sustainable energy reviews, 2022, 170: 112958.
[5] DINWOODIE I, MCMILLAN D, REVIE M, et al.Development of a combined operational and strategic decision support model for offshore wind[J]. Energy procedia, 2013, 35: 157-166.
[6] BADIHI H, JADIDI S, ZHANG Y M, et al.Fault-tolerant cooperative control in a wind farm using adaptive control reconfiguration and control reallocation[J]. IEEE transactions on sustainable energy, 2020, 11(4): 2119-2129.
[7] LAN J L, PATTON R J, ZHU X Y.Fault-tolerant wind turbine pitch control using adaptive sliding mode estimation[J]. Renewable energy, 2018, 116: 219-231.
[8] SHI F M, PATTON R.An active fault tolerant control approach to an offshore wind turbine model[J]. Renewable energy, 2015, 75: 788-798.
[9] BADIHI H, ZHANG Y M, PILLAY P, et al.Fault-tolerant individual pitch control for load mitigation in wind turbines with actuator faults[J]. IEEE transactions on industrial electronics, 2021, 68(1): 532-543.
[10] BLESA J, ROTONDO D, PUIG V, et al.FDI and FTC of wind turbines using the interval observer approach and virtual actuators/sensors[J]. Control engineering practice, 2014, 24: 138-155.
[11] WANG Z S, LIU L, ZHANG H G.Neural network-based model-free adaptive fault-tolerant control for discrete-time nonlinear systems with sensor fault[J]. IEEE transactions on systems, man, and cybernetics: systems, 2017, 47(8): 2351-2362.
[12] LI H, GUEDES SOARES C.Assessment of failure rates and reliability of floating offshore wind turbines[J]. Reliability engineering & system safety, 2022, 228: 108777.
[13] 肖俊青, 金江涛, 李春, 等. 基于深度学习风力机齿轮箱的故障诊断[J]. 太阳能学报, 2023, 44(5): 302-309.
XIAO J Q, JIN J T, LI C, et al.Fault diagnosis of wind turbine gearbox based on deep learning[J]. Acta energiae solaris sinica, 2023, 44(5): 302-309.
[14] 孟良, 苏元浩, 许同乐, 等. 并行卷积神经网络的风电机组故障诊断方法[J]. 太阳能学报, 2023, 44(5): 449-456.
MENG L, SU Y H, XU T L, et al.Wind turbine fault diagnosis method based on parallel convolutional neural network[J]. Acta energiae solaris sinica, 2023, 44(5): 449-456.
[15] COULLING A J, GOUPEE A J, ROBERTSON A N, et al.Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data[J]. Journal of renewable and sustainable energy, 2013, 5(2): 557-569.
[16] JOMKMAN J M.Dynamics modeling and loads analysis of an offshore floating wind turbine[D]. Denver: National Renewable Energy Laboratory, 2007.
[17] CARROLL J, MCDONALD A, MCMILLAN D.Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines[J]. Wind energy, 2016, 19(6): 1107-1119.
[18] YANG X Y, ZHANG Y F, LYU W, et al.Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier[J]. Renewable energy, 2021, 163: 386-397.
[19] HOU Z S, JIN S T.A novel data-driven control approach for a class of discrete-time nonlinear systems[J]. IEEE transactions on control systems technology, 2011, 19(6): 1549-1558.
[20] LI J S, WANG S X.Dual multivariable model-free adaptive individual pitch control for load reduction in wind turbines with actuator faults[J]. Renewable energy, 2021, 174: 293-304.
[21] 漆良文, 石可重, 郭乃志, 等. 漂浮式风电机组无模型自适应控制[J]. 太阳能学报, 2023, 44(5): 384-390.
QI L W, SHI K Z, GUO N Z, et al.Model free adaptive control for floating offshore wind turbines[J]. Acta energiae solaris sinica, 2023, 44(5): 384-390.
[22] 周腊吾, 杨彬佑, 韩兵, 等. 漂浮式风机气-水动力耦合下的独立变桨控制方法[J]. 电工技术学报, 2019, 34(17): 3607-3614.
ZHOU L W, YANG B Y, HAN B, et al.The individual blade pitch control for the floating offshore wind turbines bearing the air-hydrodynamic coupling loads[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3607-3614.

基金

北京市自然科学基金(3202028)

PDF(1806 KB)

Accesses

Citation

Detail

段落导航
相关文章

/