海上风电柔直送出系统改进频率协同控制策略

张龙, 孙丹, 马志豪, 年珩

太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 478-486.

PDF(1426 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1426 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 478-486. DOI: 10.19912/j.0254-0096.tynxb.2023-0908

海上风电柔直送出系统改进频率协同控制策略

  • 张龙, 孙丹, 马志豪, 年珩
作者信息 +

IMPROVED FREQUENCY COORDINATED CONTROL STRATEGY FOR HVDC-INTEGRATED OFFSHORE WIND FARM

  • Zhang Long, Sun Dan, Ma Zhihao, Nian Heng
Author information +
文章历史 +

摘要

针对远海风场经柔直系统接入岸上电网后无法提供频率主动支撑的问题,该文提出一种远海风场与柔直系统改进频率协同控制方案。协同控制方案分为柔直系统层面和远海风场层面。针对柔直系统,将岸上电网的频率变化通过下垂控制转化为直流电压的变化,分析下垂控制系数与柔直系统虚拟惯量系数之间的关系,提出一种计及电网频率偏差的柔直系统自适应控制方法。针对远海风场,在频率故障前以最大化风电场转子动能为目标提出一种改进的功率备用方法,能有效减小风电场的风能损失并将该部分能量用于后续频率调节中,在频率故障后考虑风速差异根据转子转速实时调整风电机组频率控制系数,能在保证机组运行安全性的前提下提升风电场整体调频能力。仿真结果表明,所提控制方法在不同风速以及风电渗透率下均具有良好的调频性能。

Abstract

To address the problem that offshore wind farms (OWF) connected to the onshore grid by voltage source converter based high-voltage direct current (VSC-HVDC) cannot provide frequency active support, this paper proposes an improved frequency coordination control scheme between the offshore wind farms and the VSC-HVDC. The coordinated control scheme is divided into the level of the VSC station and the level of the offshore wind farms. For the VSC station, the frequency change of the onshore grid is transformed into the change of DC voltage through sag control, and the relationship between the sag control coefficient and the virtual inertia coefficient of the HVDC is analyzed, and then the virtual inertia coefficient is adjusted adaptively considering the index of grid frequency deviation. For the offshore wind farms, an improved power backup method is proposed with the objective of maximizing the rotor kinetic energy of wind farms before the frequency failure, which can effectively reduce the wind energy loss and use this part of energy for subsequent frequency adjustment. Considering the wind speed difference of wind turbines, the frequency control coefficients can be adjusted in real time according to rotor speed after the frequency failure. The proposed control strategy can improve the overall frequency regulation capacity of wind farms, while ensuring the safe and stable operation of the units. The simulation results show that the proposed control method has good frequency regulation performance at different wind speeds as well as wind power penetration rates.

关键词

海上风电场 / 柔性直流输电 / 频率响应 / 减载控制 / 参数整定

Key words

offshore wind farms / VSC-HVDC / frequency response / de-loading control / parameter tuning

引用本文

导出引用
张龙, 孙丹, 马志豪, 年珩. 海上风电柔直送出系统改进频率协同控制策略[J]. 太阳能学报. 2024, 45(10): 478-486 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0908
Zhang Long, Sun Dan, Ma Zhihao, Nian Heng. IMPROVED FREQUENCY COORDINATED CONTROL STRATEGY FOR HVDC-INTEGRATED OFFSHORE WIND FARM[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 478-486 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0908
中图分类号: TM614   

参考文献

[1] 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(14): 3758-3771.
CHI Y N, LIANG W, ZHANG Z K, et al.An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36(14): 3758-3771.
[2] 朱介北, 史美琦, 张利, 等. 基于超级电容的海上风电柔直送出系统协调惯量支撑策略[J]. 电网技术, 2022, 46(8): 2938-2952.
ZHU J B, SHI M Q, ZHANG L, et al.Supercapacitor-based coordinated inertia support strategy for offshore wind farms integration via VSC-HVDC[J]. Power system technology, 2022, 46(8): 2938-2952.
[3] 姚伟, 熊永新, 姚雅涵, 等. 海上风电柔直并网系统调频控制综述[J]. 高电压技术, 2021, 47(10): 3397-3413.
YAO W, XIONG Y X, YAO Y H, et al.Review of voltage source converter-based high voltage direct current integrated offshore wind farm on providing frequency support control[J]. High voltage engineering, 2021, 47(10): 3397-3413.
[4] 兰飞, 潘益丰, 时萌, 等. 双馈风电机组变系数虚拟惯量优化控制[J]. 电力系统自动化, 2019, 43(12): 51-59.
LAN F, PAN Y F, SHI M, et al.Optimal variable-coefficient virtual inertia control for DFIG-based wind turbines[J]. Automation of electric power systems, 2019, 43(12): 51-59.
[5] 田新首, 王伟胜, 迟永宁, 等. 基于双馈风电机组有效储能的变参数虚拟惯量控制[J]. 电力系统自动化, 2015, 39(5): 20-26, 33.
TIAN X S, WANG W S, CHI Y N, et al.Variable parameter virtual inertia control based on effective energy storage of DFIG-based wind turbines[J]. Automation of electric power systems, 2015, 39(5): 20-26, 33.
[6] 李和明, 张祥宇, 王毅, 等. 基于功率跟踪优化的双馈风力发电机组虚拟惯性控制技术[J]. 中国电机工程学报, 2012, 32(7): 32-39.
LI H M, ZHANG X Y, WANG Y, et al.Virtual inertia control of DFIG-based wind turbines based on the optimal power tracking[J]. Proceedings of the CSEE, 2012, 32(7): 32-39.
[7] 李颖颖, 王德林, 范林源, 等. 双馈风电机组限功率运行下频率稳定的变系数控制策略[J]. 电网技术, 2019, 43(8): 2910-2917.
LI Y Y, WANG D L, FAN L Y, et al.Variable coefficient control strategy for frequency stability of DFIG under power-limited operation[J]. Power system technology, 2019, 43(8): 2910-2917.
[8] 高澈, 田新首, 李琰, 等. 基于运行状态评估的双馈风机自适应虚拟同步发电机控制[J]. 电网技术, 2018, 42(2): 517-523.
GAO C, TIAN X S, LI Y, et al.Adaptive virtual synchronous generator control of DFIG based on operation state evaluation[J]. Power system technology, 2018, 42(2): 517-523.
[9] 乔颖, 郭晓茜, 鲁宗相, 等. 考虑系统频率二次跌落的风电机组辅助调频参数确定方法[J]. 电网技术, 2020, 44(3): 807-815.
QIAO Y, GUO X Q, LU Z X, et al.Parameter setting of auxiliary frequency regulation of wind turbines considering secondary frequency drop[J]. Power system technology, 2020, 44(3): 807-815.
[10] 林俐, 朱晨宸, 郑太一, 等. 风电集群有功功率控制及其策略[J]. 电力系统自动化, 2014, 38(14): 9-16.
LIN L, ZHU C C, ZHENG T Y, et al.Active power control of wind farm cluster and its strategy[J]. Automation of electric power systems, 2014, 38(14): 9-16.
[11] 胥国毅, 胡家欣, 郭树锋, 等. 超速风电机组的改进频率控制方法[J]. 电力系统自动化, 2018, 42(8): 39-44.
XU G Y, HU J X, GUO S F, et al.Improved frequency control strategy for over-speed wind turbines[J]. Automation of electric power systems, 2018, 42(8): 39-44.
[12] 王同森, 张峰, 丁磊. 考虑最优运行点的超速风电机组调频控制策略[J]. 电力自动化设备, 2021, 41(6): 22-28.
WANG T S, ZHANG F, DING L.Frequency regulation control strategy of over-speed wind turbines considering optimal operation point[J]. Electric power automation equipment, 2021, 41(6): 22-28.
[13] 付媛, 王毅, 张祥宇, 等. 变速风电机组的惯性与一次调频特性分析及综合控制[J]. 中国电机工程学报, 2014, 34(27): 4706-4716.
FU Y, WANG Y, ZHANG X Y, et al.Analysis and integrated control of inertia and primary frequency regulation for variable speed wind turbines[J]. Proceedings of the CSEE, 2014, 34(27): 4706-4716.
[14] 胡家欣, 胥国毅, 毕天姝, 等. 减载风电机组变速变桨协调频率控制方法[J]. 电网技术, 2019, 43(10): 3656-3663.
HU J X, XU G Y, BI T S, et al.A strategy of frequency control for deloaded wind turbine generator based on coordination between rotor speed and pitch angle[J]. Power system technology, 2019, 43(10): 3656-3663.
[15] LIN C H, WU Y K. Overview of frequency-control technologies for a VSC-HVDC-integrated wind farm[J]. IEEE access, 2829, 9: 112893-112921.
[16] LIU X D, LINDEMANN A.Control of VSC-HVDC connected offshore windfarms for providing synthetic inertia[J]. IEEE journal of emerging and selected topics in power electronics, 2018, 6(3): 1407-1417.
[17] LI Y J, XU Z, ØSTERGAARD J, et al.Coordinated control strategies for offshore wind farm integration via VSC-HVDC for system frequency support[J]. IEEE transactions on energy conversion, 2017, 32(3): 843-856.
[18] 李宇骏, 杨勇, 李颖毅, 等. 提高电力系统惯性水平的风电场和VSC-HVDC协同控制策略[J]. 中国电机工程学报, 2014, 34(34): 6021-6031.
LI Y J, YANG Y, LI Y Y, et al.Coordinated control of wind farms and VSC-HVDC to improve inertia level of power system[J]. Proceedings of the CSEE, 2014, 34(34): 6021-6031.
[19] 颜湘武, 王德胜, 杨琳琳, 等. 直驱风机惯量支撑与一次调频协调控制策略[J]. 电工技术学报, 2021, 36(15): 3282-3292.
YAN X W, WANG D S, YANG L L, et al.Coordinated control strategy of inertia support and primary frequency regulation of PMSG[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3282-3292.
[20] LYU X, JIA Y W, XU Z.A novel control strategy for wind farm active power regulation considering wake interaction[J]. IEEE transactions on sustainable energy, 2020, 11(2): 618-628.
[21] LYU X, JIA Y W, DONG Z Y.Adaptive frequency responsive control for wind farm considering wake interaction[J]. Journal of modern power systems and clean energy, 2021, 9(5): 1066-1075.
[22] 刘彬彬, 杨健维, 廖凯, 等. 基于转子动能控制的双馈风电机组频率控制改进方案[J]. 电力系统自动化, 2016, 40(16): 17-22.
LIU B B, YANG J W, LIAO K, et al.Improved frequency control strategy for DFIG-based wind turbines based on rotor kinetic energy control[J]. Automation of electric power systems, 2016, 40(16): 17-22.
[23] 刘福锁, 卿梦琪, 唐飞, 等. 计及风电一次调频和频率约束的风电占比极限值计算[J]. 电网技术, 2021, 45(3): 863-870.
LIU F S, QING M Q, TANG F, et al.Limit proportion calculation of wind power considering primary frequency modulation and frequency constraints[J]. Power system technology, 2021, 45(3): 863-870.

基金

国家自然科学基金(52325702)

PDF(1426 KB)

Accesses

Citation

Detail

段落导航
相关文章

/