该文基于能量平衡与集热/蒸发器换热特性建立双源热泵的系统仿真模型,该热泵采用并联的翅片管风冷蒸发器和吹胀板双面太阳能集热/蒸发器,模型考虑吹胀板蒸发器的正面和背面的实时太阳辐射得热,基于全年气象参数,对热泵在上海地区的全年运行性能进行模拟,分析太阳能集热面积对热泵性能的影响;基于优化的集热/蒸发器面积,对比分析双源热泵3种工作模式的全年运行性能;以逐时热泵COP最高为目标,得到热泵逐时最佳工作模式。模拟结果表明:对于45°朝南安装的双面吹胀板蒸发器,背面太阳能辐射得热是正面得热的3%~15%;双源热泵并联运行模式下全年COP比单空气源热泵、单太阳能热泵分别高24.2%和2.5%;得到以水平总辐照度Ig和环境温度Ta表示的双源热泵逐时最佳工作模式判别规则:Ig25.05Ta-146.8时,系统的最佳工作模式为太阳能模式;Ig25.05Ta-146.8时,系统最佳工作模式为太阳能-空气源并联模式。在逐时最佳工作模式下,相对于固定的双源并联运行模式,热泵年COP提高4.7%,冬季COP提高11.0%。
Abstract
Based on the energy balance and the heat transfer characteristics of the collector-evaporator, a system simulation model of a dual-source heat pump is established. The heat pump combines a finned tube air-cooled evaporator and a roll-bond plate double-sided solar collector-evaporator in parallel, and the model considers the real-time solar radiation heat gain on the front and back of the roll-bond plate evaporator. Based on the annual meteorological parameters, the annual operation performance of the heat pump in Shanghai is simulated to analyze the effect of solar collector area on the performance of the heat pump. Based on the optimized collector-evaporator area, the annual operation performance of three working modes of the dual-source heat pump is compared and analyzed. Aiming at the highest hourly COP, the optimal working mode of the heat pump is obtained hour by hour. The simulation results show that: for the double-sided roll-bond plate evaporator installed at 45-degree tilt towards the south, the solar radiation heat gain on the back is 3%-15% of that on the front; the annual COP of the dual-source heat pump in parallel operation mode is 24.2% and 2.5% higher than that of single air-source heat pump and single solar energy heat pump respectively. The discrimination rule of the hourly optimal working mode of the dual-source heat pump expressed by the total horizontal irradiance Ig and the ambient temperature Ta is obtained: when Ig25.05Ta-146.8, the optimal working mode of the system is the solar mode; when Ig25.05Ta-146.8, the optimal working mode is the solar-air source parallel mode. In the hourly optimal working mode, the annual COP of the heat pump is increased by 4.7% and the winter COP is increased by 11.0% relative to the fixed dual-source parallel operation mode.
关键词
太阳能 /
热泵系统 /
空气源热泵 /
性能系数 /
逐时模式优化
Key words
solar energy /
heat pump system /
air source heat pump /
coefficient of performance /
hourly mode optimization
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HUANG W Z, ZHANG T, JI J, et al.Numerical study and experimental validation of a direct-expansion solar-assisted heat pump for space heating under frosting conditions[J]. Energy and buildings, 2019, 185: 224-238.
[2] 郑思航, 姚剑, 赵耀, 等. 两种直膨式太阳能集热/蒸发器性能对比实验研究[J]. 太阳能学报, 2023, 44(4): 487-491.
ZHENG S H, YAO J, ZHAO Y, et al.Comparative experimental research on performance of two direct expansion solar heat pump collectors/evaporators[J]. Acta energiae solaris sinica, 2023, 44(4): 487-491.
[3] 孔祥强, 马廷东, 马善乐, 等. 直膨式太阳能热泵微通道集热/蒸发器制冷剂分布特性[J]. 太阳能学报, 2022, 43(8): 236-244.
KONG X Q, MA T D, MA S L, et al.Distribution characteristics of refrigerant in microchannel collector/evaporator of direct-expansion solar-assisted heat pump[J]. Acta energiae solaris sinica, 2022, 43(8): 236-244.
[4] LEONFORTE F, MIGLIOLI A, DEL PERO C, et al.Design and performance monitoring of a novel photovoltaic-thermal solar-assisted heat pump system for residential applications[J]. Applied thermal engineering, 2022, 210: 118304.
[5] 何宏宇, 李舒宏, 董科枫. 光伏一体化太阳能热泵热水器的实时变容量控制[J]. 中南大学学报(自然科学版), 2018, 49(12): 3095-3104.
HE H Y, LI S H, DONG K F.Real-time variable capacity control strategy of photovoltaic integrated solar heat pump water heater[J]. Journal of Central South University (science and technology), 2018, 49(12): 3095-3104.
[6] 王岗, 杨永清, 余万, 等. 太阳能-空气复合热源热泵系统仿真分析[J]. 制冷学报, 2023, 44(1): 150-158.
WANG G, YANG Y Q, YU W, et al.Simulation analysis of solar-air dual heat source heat pump system[J]. Journal of refrigeration, 2023, 44(1): 150-158.
[7] MA K R, WANG Z C, LI X F, et al.Structural optimization of collector/evaporator of direct-expansion solar/air-assisted heat pump[J]. Alexandria engineering journal, 2021, 60(1): 387-392.
[8] CAI J Y, ZHOU H H, SHI Z R, et al.Analysis and optimization on the performance of a heat pump water heater with solar-air dual series source[J]. Case studies in thermal engineering, 2021, 28: 101577.
[9] 李祖强, 黄兴华, 刘茂玲. 太阳能和空气源复合热泵的最优模式切换分析[J]. 太阳能学报, 2023, 44(2): 30-36.
LI Z Q, HUANG X H, LIU M L.Optimal mode switching analysis of solar energy and air source hybrid heat pump[J]. Acta energiae solaris sinica, 2023, 44(2): 30-36.
[10] 刘文杰, 姚剑, 代彦军. 直膨式太阳能PVT热泵系统性能仿真及全年运行性能分析[J]. 制冷学报, 2022, 43(3): 161-166.
LIU W J, YAO J, DAI Y J.Simulation and annual performance analysis on a direct-expansion solar-assisted PVT heat pump system[J]. Journal of refrigeration, 2022, 43(3): 161-166.
[11] 何梓年. 太阳能热利用[M]. 合肥: 中国科学技术大学出版社, 2009: 40-44.
HE Z N.Solar thermal utilization[M]. Hefei: University of Science and Technology of China Press, 2009: 40-44.
[12] SHOUKRY I, LIBAL J, KOPECEK R, et al.Modelling of bifacial gain for stand-alone and in-field installed bifacial PV modules[J]. Energy procedia, 2016, 92: 600-608.
[13] GROSS U, SPINDLER K, HAHNE E.Shapefactor-equations for radiation heat transfer between plane rectangular surfaces of arbitrary position and size with parallel boundaries[J]. Letters in heat and mass transfer, 1981, 8(3): 219-227.
[14] YAO J, CHEN E J, DAI Y J, et al.Theoretical analysis on efficiency factor of direct expansion PVT module for heat pump application[J]. Solar energy, 2020, 206: 677-694.
[15] KANDLIKAR S G.A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes[J]. Journal of heat transfer, 1990, 112(1): 219-228.
[16] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 461-462, 268-269.
YANG S M, TAO W Q.Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006: 461-462, 268-269.
[17] 陆亚俊, 马最良, 姚杨. 空调工程中的制冷技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 1997: 111.
LU Y J, MA Z L, YAO Y.Refrigeration technology in air conditioning engineering[M]. Harbin: Harbin Engineering University Press, 1997: 111.
[18] BRUNIN O, FEIDT M, HIVET B.Comparison of the working domains of some compression heat pumps and a compression-absorption heat pump[J]. International journal of refrigeration, 1997, 20(5): 308-318.
[19] SHAH M M.A general correlation for heat transfer during film condensation inside pipes[J]. International journal of heat and mass transfer, 1979, 22(4): 547-556.
[20] GUO J J, WU J Y, WANG R Z, et al.Experimental research and operation optimization of an air-source heat pump water heater[J]. Applied energy, 2011, 88(11): 4128-4138.
[21] KONG X Q, SUN P L, DONG S D, et al.Experimental performance analysis of a direct-expansion solar-assisted heat pump water heater with R134a in summer[J]. International journal of refrigeration, 2018, 91: 12-19.
[22] SUN X L, WU J Y, DAI Y J, et al.Experimental study on roll-bond collector/evaporator with optimized-channel used in direct expansion solar assisted heat pump water heating system[J]. Applied thermal engineering, 2014, 66(1/2): 571-579.
[23] METEONORM. Handbook Part Ⅰ:Software. Version 8.0.2020[EB/OL]. http://meteonorm.com.
[24] 陈红兵, 张磊, 邵宗义. 热管式太阳能PV/T系统性能研究与优化[M]. 北京: 机械工业出版社, 2017: 100-102.
CHEN H B, ZHANG L, SHAO Z Y.Performance research and optimization of heat pipe solar PV/T system[M]. Beijing: China Machine Press, 2017: 100-102.