基于抽蓄协调的新能源纳入电力系统备用方法

孟高军, 钱聪聪, 于琳琳, 程昱明, 贾鹏

太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 162-170.

PDF(1253 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1253 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 162-170. DOI: 10.19912/j.0254-0096.tynxb.2023-0911

基于抽蓄协调的新能源纳入电力系统备用方法

  • 孟高军1, 钱聪聪1, 于琳琳2, 程昱明2, 贾鹏2
作者信息 +

STANDBY METHOD OF INTEGRATING NEW ENERGY INTO POWER SYSTEMS BASED ON PUMPED STORAGE COORDINATION

  • Meng Gaojun1, Qian Congcong1, Yu Linlin2, Cheng Yuming2, Jia Peng2
Author information +
文章历史 +

摘要

大规模新能源并网后,传统的备用体系制约含高比例新能源电力系统的新能源消纳能力。为此,该文提出基于抽蓄协调的新能源纳入电力系统备用方法。首先,采用改进K-均值聚类算法生成各时段新能源出力预测典型场景;然后,基于广义新能源预测偏差及弃用风险约束,确定各时段各典型场景的最佳新能源纳入备用比例系数;最后,根据各时段的新能源预测数据和抽水蓄能机组的发电支撑状态,进一步调节所对应时段新能源纳入系统备用的最佳比例系数,将新能源合理地纳入系统备用。算例结果验证所提方法能够有效提升含高比例新能源电力系统新能源消纳能力,减少新能源弃用。

Abstract

After large-scale renewable energy resources integration, the traditional reserve system restricts the renewable energy consumption capacity of power system with high proportion of renewable energy. Therefore, a method of incorporating renewable energy into standby power systems based on the coordination of pumped storage power plants is proposed. Firstly, the improved K-means clustering algorithm is used to generate typical scenarios of renewable energy output prediction in each period. Then, based on the generalized renewable energy prediction deviation risk constraint and the generalized standby power systems abandonment risk constraint, the optimal renewable energy included in the reserve ratio coefficient of each typical scenario in each period is determined. Finally, according to the renewable energy forecast data of each period and the power generation support state of the pumped storage power plants, the optimal proportion coefficient of the renewable energy into the standby power systems is further regulated, and the renewable energy is reasonably incorporated into the standby power systems. The results of the example verify that the proposed method can effectively improve the renewable energy consumption capacity of the power system with high proportion of renewable energy and reduce the abandonment of renewable energy.

关键词

新能源 / 电力系统备用 / 抽水蓄能 / K-均值聚类 / 风险约束

Key words

new energy / standby power systems / pumped-hydro energy storage / K-means clustering / risk constraints

引用本文

导出引用
孟高军, 钱聪聪, 于琳琳, 程昱明, 贾鹏. 基于抽蓄协调的新能源纳入电力系统备用方法[J]. 太阳能学报. 2024, 45(10): 162-170 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0911
Meng Gaojun, Qian Congcong, Yu Linlin, Cheng Yuming, Jia Peng. STANDBY METHOD OF INTEGRATING NEW ENERGY INTO POWER SYSTEMS BASED ON PUMPED STORAGE COORDINATION[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 162-170 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0911
中图分类号: TM732   

参考文献

[1] 陈国平, 梁志峰, 董昱. 基于能源转型的中国特色电力市场建设的分析与思考[J]. 中国电机工程学报, 2020, 40(2): 369-379.
CHEN G P, LIANG Z F, DONG Y.Analysis and reflection on the marketization construction of electric power with Chinese characteristics based on energy transformation[J]. Proceedings of the CSEE, 2020, 40(2): 369-379.
[2] 高洪超, 王宣元, 邱小燕, 等. 新型电力系统环境下的虚拟电厂辅助调峰市场机制及其商业模式设计[J]. 太阳能学报, 2023, 44(3): 376-385.
GAO H C, WANG X Y, QIU X Y, et al.Ramping energy market mechanism and its business model of virtual power plants oriented to new power system[J]. Acta energiae solaris sinica, 2023, 44(3): 376-385.
[3] 国家能源局. 国家能源局发布2023年全国电力工业统计数据[J]. 电力科技与环保, 2024, 40(1): 95.
National Energy Administration.National Energy Administration released statistical data of national electric power industry in 2023[J]. Electric power technology and environmental protection, 2024, 40(3): 95.
[4] 刘华志, 李永刚, 王优胤, 等. 无功电压优化对新能源消纳的影响[J]. 电工技术学报, 2019, 34(增刊2): 646-653.
LIU H Z, LI Y G, WANG Y Y, et al.Influence about reactive power voltage optimization on the dissipation of new energy[J]. Transactions of China Electrotechnical Society, 2019, 34(S2): 646-653.
[5] 崔杨, 程广岩, 仲悟之, 等. 计及受端电网调峰趋势的风-光-火特高压直流外送调度方法[J]. 太阳能学报, 2021, 42(8): 32-40.
CUI Y, CHENG G Y, ZHONG W Z, et al.Wind-photovoltaic-fire UHVDC external dispatching method considering peaking trend of power grid[J]. Acta energiae solaris sinica, 2021, 42(8): 32-40.
[6] 苏鹏, 刘天琪, 李兴源. 含风电的系统最优旋转备用的确定[J]. 电网技术, 2010, 34(12): 158-162.
SU P, LIU T Q, LI X Y.Determination of optimal spinning reserve of power grid containing wind[J]. Power system technology, 2010, 34(12): 158-162.
[7] 张振宇, 孙骁强, 万筱钟, 等. 基于统计学特征的新能源纳入西北电网备用研究[J]. 电网技术, 2018, 42(7): 2047-2054.
ZHANG Z Y, SUN X Q, WAN X Z, et al.Research on reserve of northwest power grid considering renewable energy based on statistical characteristics[J]. Power system technology, 2018, 42(7): 2047-2054.
[8] 李鹏, 李凤婷, 宋新甫, 等. 考虑柔性负荷的新能源接入系统旋转备用优化[J]. 电网技术, 2021, 45(4): 1288-1295.
LI P, LI F T, SONG X F, et al.Considering the flexible load new energy access system optimization for spinning reserve[J]. Power system technology, 2021, 45(4): 1288-1295.
[9] JIANG H Y, XU J, SUN Y Z, et al.Dynamic reserve demand estimation model and cost-effectivity oriented reserve allocation strategy for multi-area system integrated with wind power[J]. IET generation, transmission & distribution, 2018, 12(7): 1606-1620.
[10] 张振宇, 王文倬, 马晓伟, 等. 基于风险控制的新能源纳入电力系统备用方法[J]. 电网技术, 2020, 44(9): 3375-3382.
ZHANG Z Y, WANG W Z, MA X W, et al.Reserve of power system considering renewable energy based on risk control[J]. Power system technology, 2020, 44(9): 3375-3382.
[11] 严干贵, 张善峰, 贾祺, 等. 光伏发电主动参与电网频率调节的机理分析[J]. 太阳能学报, 2021, 42(8): 191-199.
YAN G G, ZHANG S F, JIA Q, et al.Mechanism analysis of pv generation actively participating in power grid frequency regulation[J]. Acta energiae solaris sinica, 2021, 42(8): 191-199.
[12] 易俊, 林伟芳, 余芳芳, 等. 受静态电压稳定约束的新能源临界渗透率计算方法[J]. 电网技术, 2020, 44(8): 2906-2912.
YI J, LIN W F, YU F F, et al.Calculation method of critical penetration of renewable energy constrained by static voltage stability[J]. Power system technology, 2020, 44(8): 2906-2912.
[13] 张尧翔, 刘文颖, 庞清仑, 等. 高比例风电接入系统光热发电-火电旋转备用优化方法[J]. 电工技术学报, 2022, 37(21): 5478-5489.
ZHANG Y X, LIU W Y, PANG Q L, et al.Optimal power spinning reserve method of concentrating solar power and thermal power for high-proportion wind power system[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5478-5489.
[14] 张扬科, 李刚, 李秀峰. 基于典型代表电站和改进SVM的区域光伏功率短期预测方法[J]. 电力自动化设备, 2021, 41(11): 205-210.
ZHANG Y K, LI G, LI X F.Short-term forecasting method for regional photovoltaic power based on typical representative power stations and improved SVM[J]. Electric power automation equipment, 2021, 41(11): 205-210.
[15] 孙林, 刘梦含, 徐久成. 基于优化初始聚类中心和轮廓系数的K-means聚类算法[J]. 模糊系统与数学, 2022, 36(1): 47-65.
SUN L, LIU M H, XU J C.K-means clustering algorithm using optimal initial clustering center and contour coefficient[J]. Fuzzy systems and mathematics, 2022, 36(1): 47-65.
[16] 周本金, 陶以政, 纪斌, 等. 最小化误差平方和k-means初始聚类中心优化方法[J]. 计算机工程与应用, 2018, 54(15): 48-52.
ZHOU B J, TAO Y Z, JI B, et al.Optimizing k-means initial clustering centers by minimizing sum of squared error[J]. Computer engineering and applications, 2018, 54(15): 48-52.

基金

国家自然科学基金(51877101); 江苏省重点研发计划(BE2021094)

PDF(1253 KB)

Accesses

Citation

Detail

段落导航
相关文章

/