在线选择性集成即时学习风电功率自适应预测

李运龙, 金怀平, 范守元, 金怀康, 王彬

太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 487-496.

PDF(1368 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1368 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 487-496. DOI: 10.19912/j.0254-0096.tynxb.2023-0913

在线选择性集成即时学习风电功率自适应预测

  • 李运龙1,2, 金怀平1, 范守元2, 金怀康3, 王彬1
作者信息 +

ADAPTIVE WIND POWER FORECASTING BASED ON ONLINE SELECTIVE ENSEMBLE JUST-IN-TIME LEARNING

  • Li Yunlong1,2, Jin Huaiping1, Fan Shouyuan2, Jin Huaikang3, Wang Bin1
Author information +
文章历史 +

摘要

风电功率预测可为风电的并网和优化调度提供有效的指导信息,在风能的开发利用中扮演着举足轻重的角色。然而,由于风电固有的间歇性和随机性给准确的风电功率预测带来巨大挑战。同时,由于受季节性、气候性、设备老化等因素影响,随着时间的推移,风电功率数据特征难免发生改变,这将直接导致离线的风电功率模型性能发生退化。为此,提出一种在线选择性集成即时学习(OSEJIT)自适应风电功率预测方法。首先,为了有效处理风电的非线性和时变性特征,通过相似度、学习器扰动以构建多样性JIT基模型库。其次,为了保证集成有效性,定义基于Friedman检验的多样性指标和基于预测精度的准确性指标以实现模型的在线选择。随后,在线预测阶段,根据模型近期的预测性能通过自适应加权集成的方式获得最终预测值。为了保证基模型库的更新,同时规避模型频繁重建导致计算资源耗费的问题,采用一种基于KL散度的过程状态识别方法以减少模型重建频率。所提方法的有效性和优越性在一个实际风电功率数据应用中获得了验证。

Abstract

Wind power forecasting can provide effective guidance information for grid connection and optimal scheduling of wind power, and plays an important role in the development and utilization of wind energy. However, accurate wind power forecasting often encounters great challenges due to the inherent intermittency and randomness of wind power. Moreover, the characteristics of wind power data changes over time due to the factors such as seasonality, climate and equipment aging, which causes performance degradation of offline wind power forecasting models. To address these issues, an adaptive wind power forecasting method based on online selective ensemble just-in-time learning (OSEJIT) is proposed. Firstly, we construct a JIT base model library, incorporating similarity and learner perturbation techniques to effectively handle wind power's nonlinearity and time-varying behavior, ensuring reliable forecasting. Secondly, we establish metrics for ensemble effectiveness, utilizing the Friedman test for diversity and prediction accuracy for model selection during online prediction. Subsequently, the final prediction is obtained through adaptive weighted ensemble based on the recent prediction performance of the individual models. To update the base model library while minimizing frequent model reconstruction and resource consumption, a state identification method based on KL divergence is employed. The effectiveness and superiority of the proposed method are validated through a real wind power data set.

关键词

风电功率 / 预测 / 自适应算法 / 过程状态识别 / 统计假设检验 / 在线选择性集成 / 即时学习

Key words

wind power / forecasting / adaptive algorithm / process state identification / statistical hypothesis testing / online selective ensemble / just-in-time learning

引用本文

导出引用
李运龙, 金怀平, 范守元, 金怀康, 王彬. 在线选择性集成即时学习风电功率自适应预测[J]. 太阳能学报. 2024, 45(10): 487-496 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0913
Li Yunlong, Jin Huaiping, Fan Shouyuan, Jin Huaikang, Wang Bin. ADAPTIVE WIND POWER FORECASTING BASED ON ONLINE SELECTIVE ENSEMBLE JUST-IN-TIME LEARNING[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 487-496 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0913
中图分类号: TM614   

参考文献

[1] HOSSAIN M A, CHAKRABORTTY R K, ELSAWAH S, et al.Very short-term forecasting of wind power generation using hybrid deep learning model[J]. Journal of cleaner production, 2021, 296: 126564.
[2] GU B, ZHANG T R, MENG H, et al.Short-term forecasting and uncertainty analysis of wind power based on long short-term memory, cloud model and non-parametric kernel density estimation[J]. Renewable energy, 2021, 164: 687-708.
[3] XU W F, LIU P, CHENG L, et al.Multi-step wind speed prediction by combining a WRF simulation and an error correction strategy[J]. Renewable energy, 2021, 163: 772-782.
[4] KISVARI A, LIN Z, LIU X L.Wind power forecasting: a data-driven method along with gated recurrent neural network[J]. Renewable energy, 2021, 163: 1895-1909.
[5] DI PIAZZA A, DI PIAZZA M C, LA TONA G, et al. An artificial neural network-based forecasting model of energy-related time series for electrical grid management[J]. Mathematics and computers in simulation, 2021, 184: 294-305.
[6] WANG L, TAO R, HU H L, et al.Effective wind power prediction using novel deep learning network: stacked independently recurrent autoencoder[J]. Renewable energy, 2021, 164: 642-655.
[7] PEARRE N S, SWAN L G.Statistical approach for improved wind speed forecasting for wind power production[J]. Sustainable energy technologies and assessments, 2018, 27: 180-191.
[8] ALKHAYAT G, MEHMOOD R.A review and taxonomy of wind and solar energy forecasting methods based on deep learning[J]. Energy and AI, 2021, 4: 100060.
[9] 赫卫国, 郝向军, 郭雅娟, 等. 基于ARIMA和SVR的光伏电站超短期功率预测[J]. 广东电力, 2017, 30(8): 32-37.
HE W G, HAO X J, GUO Y J, et al.Ultra-short term power forecast based on ARIMA and SVR for photovoltaic power station[J]. Guangdong electric power, 2017, 30(8): 32-37.
[10] HONG D Y, JI T Y, LI M S, et al.Ultra-short-term forecast of wind speed and wind power based on morphological high frequency filter and double similarity search algorithm[J]. International journal of electrical power & energy systems, 2019, 104: 868-879.
[11] 叶家豪, 魏霞, 黄德启, 等. 基于灰色关联分析的BSO-ELM-AdaBoost风电功率短期预测[J]. 太阳能学报, 2022, 43(3): 426-432.
YE J H, WEI X, HUANG D Q, et al.Short-term forecast of wind power based on BSO-ELM-AdaBoost with grey correlation analysis[J]. Acta energiae solaris sinica, 2022, 43(3): 426-432.
[12] CHEN Y R, WANG Y, DONG Z K, et al.2-D regional short-term wind speed forecast based on CNN-LSTM deep learning model[J]. Energy conversion and management, 2021, 244: 114451.
[13] 贾睿, 杨国华, 郑豪丰, 等. 基于自适应权重的CNN-LSTM & GRU组合风电功率预测方法[J]. 中国电力, 2022, 55(5): 47-56, 110.
JIA R, YANG G H, ZHENG H F, et al.Combined wind power prediction method based on CNN-LSTM & GRU with adaptive weights[J]. Electric power, 2022, 55(5): 47-56, 110.
[14] 李静茹, 姚方. 引入注意力机制的CNN和LSTM复合风电预测模型[J]. 电气自动化, 2022, 44(6): 4-6.
LI J R, YAO F.Integrated CNN and LSTM wind power prediction modelwith the introduction of attention mechanism[J]. Electrical automation, 2022, 44(6): 4-6.
[15] HU H Q, KANTARDZIC M, SETHI T S.No Free Lunch Theorem for concept drift detection in streaming data classification: a review[J]. WIREs data mining and knowledge discovery, 2020, 10(2): e1327.
[16] WANG Y, SHEN Y X, MAO S W, et al.Adaptive learning hybrid model for solar intensity forecasting[J]. IEEE transactions on industrial informatics, 2018, 14(4): 1635-1645.
[17] 李大中, 李颖宇. 基于深度学习与误差修正的超短期风电功率预测[J]. 太阳能学报, 2021, 42(12): 200-205.
LI D Z, LI Y Y.Ultra-short term wind power prediction based on deep learning and error correction[J]. Acta energiae solaris sinica, 2021, 42(12): 200-205.
[18] YAN J, OUYANG T H.Advanced wind power prediction based on data-driven error correction[J]. Energy conversion and management, 2019, 180: 302-311.
[19] JIN H P, SHI L X, CHEN X G, et al.Probabilistic wind power forecasting using selective ensemble of finite mixture Gaussian process regression models[J]. Renewable energy, 2021, 174: 1-18.
[20] JIN H P, CHEN X G, YANG J W, et al.Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes[J]. Computers & chemical engineering, 2014, 71: 77-93.
[21] BAI Y, BAIN M.Optimizing weighted lazy learning and Naive Bayes classification using differential evolution algorithm[J]. Journal of ambient intelligence and humanized computing, 2022, 13(6): 3005-3024.
[22] GUO P H, RIVERA D E, PAULEY A M, et al.A “model-on-demand” methodology for energy intake estimation to improve gestational weight control interventions[J]. IFAC-PapersOnLine, 2018, 51(15): 144-149.
[23] BABAEI G, BAMDAD S.A new hybrid instance-based learning model for decision-making in the P2P lending market[J]. Computational economics, 2021, 57(1): 419-432.
[24] LIU K, SHAO W M, CHEN G M.Autoencoder-based nonlinear Bayesian locally weighted regression for soft sensor development[J]. ISA transactions, 2020, 103: 143-155.
[25] JIN H P, LI Y L, WANG B, et al.Adaptive forecasting of wind power based on selective ensemble of offline global and online local learning[J]. Energy conversion and management, 2022, 271: 116296.
[26] WOLD S, SJÖSTRÖM M, ERIKSSON L. PLS-regression: a basic tool of chemometrics[J]. Chemometrics and intelligent laboratory systems, 2001, 58(2): 109-130.
[27] ZOU H, HASTIE T.Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society series B: statistical methodology, 2005, 67(2): 301-320.
[28] TIPPING M E.Sparse Bayesian learning and the relevance vector machine[J]. Journal of machine learning research, 2001, 1: 211-244.
[29] FRIEDMAN M.The use of ranks to avoid the assumption of normality implicit in the analysis of variance[J]. Journal of the American Statistical Association, 1937, 32(200): 675-701.
[30] KHATIBISEPEHR S, HUANG B, KHARE S.Design of inferential sensors in the process industry: a review of Bayesian methods[J]. Journal of process control, 2013, 23(10): 1575-1596.
[31] DRAXL C, CLIFTON A, HODGE B M, et al.The wind integration national dataset (WIND) toolkit[J]. Applied energy, 2015, 151: 355-366.

基金

国家自然科学基金(62163019); 云南省应用基础研究计划(202101AT070096); 云南省“兴滇英才支持计划”(KKRD202203073)

PDF(1368 KB)

Accesses

Citation

Detail

段落导航
相关文章

/