基于CBAM-DSC-UNet模型的时空风速预测算法

赵陆阳, 刘长良, 刘卫亮, 李洋, 王昕, 康佳垚

太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 497-505.

PDF(1169 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1169 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 497-505. DOI: 10.19912/j.0254-0096.tynxb.2023-0914

基于CBAM-DSC-UNet模型的时空风速预测算法

  • 赵陆阳1, 刘长良1,2, 刘卫亮1,2, 李洋1, 王昕3, 康佳垚3
作者信息 +

SPATIO-TEMPORAL WIND SPEED PREDICTION ALGORITHM BASED ON CBAM-DSC-UNet MODEL

  • Zhao Luyang1, Liu Changliang1,2, Liu Weiliang1,2, Li Yang1, Wang Xin3, Kang Jiayao3
Author information +
文章历史 +

摘要

针对时空风速预测任务通常使用的卷积神经网络(CNN)和循环神经网络(RNN)联合建模方法中空间信息损失的问题,提出一种基于CBAM-DSC-UNet模型的时空风速预测算法,用于提升空间信息利用率与模型预测精度。该算法将时空风速预测问题视为视频预测问题,在提取时空相关性的同时保持空间信息,进而直接输出未来多步的空间风速矩阵。以美国怀俄明州某风电场实际数据为算例进行实验,结果表明,相比其他对比算法,基于CBAM-DSC-UNet模型的时空风速预测算法的平均绝对误差下降8.4%~15.9%,精度有较大提升。

Abstract

In response to the problem of spatial information loss in the joint modeling methods of convolutional neural networks (CNN) and recurrent neural networks (RNN) commonly used for spatial-temporal wind speed prediction tasks, we propose a spatial-temporal wind speed prediction algorithm based on the CBAM-DSC-UNet model. This algorithm aims to enhance the utilization of spatial information and improve the accuracy of model predictions. We treat the spatial-temporal wind speed prediction problem as a video prediction problem in order to preserve spatial information while extracting spatial-temporal correlations, thereby directly outputting the spatial wind speed matrix for multiple future steps. We conducted a calculating using actual data from a wind farm in Wyoming, USA as a case study. The results show that to other algorithms, the average absolute error of the spatial-temporal wind speed prediction algorithm based on the CBAM-DSC-UNet model reduces by 8.4% to 15.9%, demonstrating a significant improvement in prediction accuracy.

关键词

风力预测 / 卷积神经网络 / 时空数据 / UNet / 多风电机组

Key words

wind forecasting / convolutional neural networks / spatial-temporal data / UNet / multi-wind turbine units

引用本文

导出引用
赵陆阳, 刘长良, 刘卫亮, 李洋, 王昕, 康佳垚. 基于CBAM-DSC-UNet模型的时空风速预测算法[J]. 太阳能学报. 2024, 45(10): 497-505 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0914
Zhao Luyang, Liu Changliang, Liu Weiliang, Li Yang, Wang Xin, Kang Jiayao. SPATIO-TEMPORAL WIND SPEED PREDICTION ALGORITHM BASED ON CBAM-DSC-UNet MODEL[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 497-505 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0914
中图分类号: TM614   

参考文献

[1] 刘长良, 赵陆阳, 王梓齐, 等. 基于时空注意力-Seq2Seq模型的多风电机组多步风速预测算法[J]. 太阳能学报,2023, 44(8): 420-429.
LIU C L, ZHAO L Y, WANG Z Q, et al.Multi-step wind speed prediction algorithm of multiple wind turbines based on spatial-temporal attention-Seq2Seq model[J]. Acta energiae solaris sinica, 2023, 44(8): 420-429.
[2] SONG D R, YANG Y G, ZHENG S Y, et al.New perspectives on maximum wind energy extraction of variable-speed wind turbines using previewed wind speeds[J]. Energy conversion and management, 2020, 206: 112496.
[3] KIBONA T E.Application of WRF mesoscale model for prediction of wind energy resources in Tanzania[J]. Scientific African, 2020, 7: e00302.
[4] PRÓSPER M A, OTERO-CASAL C, FERNÁNDEZ F C, et al. Wind power forecasting for a real onshore wind farm on complex terrain using WRF high resolution simulations[J]. Renewable energy, 2019, 135: 674-686.
[5] YU M, WANG B, ZHANG L L, et al.Wind speed forecasting based on EEMD and ARIMA[C]//2015 Chinese Automation Congress(CAC), Wuhan, China, IEEE, 2015: 1299-1302.
[6] KHODAYAR M, WANG J H, MANTHOURI M.Interval deep generative neural network for wind speed forecasting[J]. IEEE transactions on smart grid, 2019, 10(4): 3974-3989.
[7] MORENO S R, DA SILVA R G, MARIANI V C, et al. Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network[J]. Energy conversion and management, 2020, 213: 112869.
[8] LOWERY C, O’ MALLEY M.Impact of wind forecast error statistics upon unit commitment[J]. IEEE transactions on sustainable energy, 2012, 3(4): 760-768.
[9] 赵征, 汪向硕, 乔锦涛. 基于VMD和改进ARIMA模型的超短期风速预测[J]. 华北电力大学学报(自然科学版), 2019, 46(1): 54-59.
ZHAO Z, WANG X S, QIAO J T.Ultra-short-term wind speed prediction based on VMD and improved ARIMA model[J]. Journal of North China Electric Power University(natural science edition), 2019, 46(1): 54-59.
[10] NATARAJAN Y J, SUBRAMANIAM NACHIMUTHU D.New SVM kernel soft computing models for wind speed prediction in renewable energy applications[J]. Soft computing, 2020, 24(15): 11441-11458.
[11] LIU H, MI X W, LI Y F.An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm[J]. Renewable energy, 2018, 123: 694-705.
[12] 向玲, 刘佳宁, 苏浩, 等. 基于CEEMDAN二次分解和LSTM的风速多步预测研究[J]. 太阳能学报, 2022, 43(8): 334-339.
XIANG L, LIU J N, SU H, et al.Research on multi-step wind speed forecast based on CEEMDAN secondary decomposition and LSTM[J]. Acta energiae solaris sinica, 2022, 43(8): 334-339.
[13] 刘擘龙, 张宏立, 王聪,等.基于序列到序列和注意力机制的超短期风速预测[J]. 太阳能学报, 2021, 42(9): 286-294.
LIU B L, ZHANG H L, WANG C, et al.Ultra-short-term wind speed prediction based on sequence-to-sequence and attention mechanism[J]. Acta energiae solaris sinica, 2021, 42(9): 286-294.
[14] CHEN Y R, WANG Y, DONG Z K, et al.2-D regional short-term wind speed forecast based on CNN-LSTM deep learning model[J]. Energy conversion and management, 2021, 244: 114451.
[15] ZHU Q M, CHEN J F, SHI D Y, et al.Learning temporal and spatial correlations jointly: a unified framework for wind speed prediction[J]. IEEE transactions on sustainable energy, 2020, 11(1): 509-523.
[16] 陈金富, 朱乔木, 石东源, 等. 利用时空相关性的多位置多步风速预测模型[J]. 中国电机工程学报, 2019, 39(7): 2093-2106.
CHEN J F, ZHU Q M, SHI D Y, et al.A multi-step wind speed prediction model for multiple sites leveraging spatio-temporal correlation[J]. Proceedings of the CSEE, 2019, 39(7): 2093-2106.
[17] 王晨, 寇鹏. 基于卷积神经网络和简单循环单元集成模型的风电场内多风机风速预测[J]. 电工技术学报, 2020, 35(13): 2723-2735.
WANG C, KOU P.Wind speed forecasts of multiple wind turbines in a wind farm based on integration model built by convolutional neural network and simple recurrent unit[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2723-2735.
[18] RONNEBERGER O, FISCHER P, BROX T.U-Net: convolutional networks for biomedical image segmentation[M]. Cham: Springer International Publishing, 2015: 234-241.
[19] KOPP M, KREIL D, NEUN M, et al.Traffic4cast at neurips 2020-yet more on the unreasonable effectiveness of gridded geo-spatial processes[C]//NeurIPS 2020 Competition and Demonstration Track, PMLR, 2021: 325-343.
[20] RONNEBERGER O, FISCHER P, BROX T.U-net: Convolutional networks for biomedical image segmentation[C]//Medical Image Computing And Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, 2015, Proceedings, part Ⅲ 18. Springer International Publishing, 2015: 234-241.
[21] WOO S, PARK J, LEE J Y, et al.CBAM: convolutional block attention module[C]//Proceedings of the European conference on computer vision(ECCV). Munich, Germany, 2018: 3-19.
[22] 任惠, 夏静, 卢锦玲, 等. 基于红外图像和改进MobileNet-V3的光伏组件故障诊断方法[J]. 太阳能学报, 2023, 44(8): 238-245.
REN H, XIA J, LU J L, et al.Research on fault diagnosis of photovoltaic modules based on infrared images and improved MobileNet-V3[J]. Acta energiae solaris sinica, 2023, 44(8): 238-245.
[23] ZHU X X, LIU R Z, CHEN Y, et al.Wind speed behaviors feather analysis and its utilization on wind speed prediction using 3D-CNN[J]. Energy, 2021, 236: 121523.
[24] PANT P, DOSHI R, BAHL P, et al.Deep learning for reduced order modelling and efficient temporal evolution of fluid simulations[J]. Physics of fluids, 2021, 33(10): 107101.
[25] 梁超, 刘永前, 周家慷, 等. 基于卷积循环神经网络的风电场内多点位风速预测方法[J]. 电网技术, 2021, 45(2): 534-542.
LIANG C, LIU Y Q, ZHOU J K, et al.Wind speed prediction at multi-locations based on combination of recurrent and convolutional neural networks[J]. Power system technology, 2021, 45(2): 534-542.

基金

国家自然科学基金(62203172); 中央高校基本科研业务费(2023JG005; 2020JG006; 2020MS117)

PDF(1169 KB)

Accesses

Citation

Detail

段落导航
相关文章

/