能源结构低碳转型下,针对绿氢蓝氢协同利用下综合效益不明确的问题,提出一种绿氢蓝氢对综合能源系统影响综合评估方法。首先基于电制绿氢、气制蓝氢、掺氢燃机和储氢罐等设备构建绿氢蓝氢综合能源系统结构,进而在碳交易机制下,建立以碳交易成本、风电运行及弃风惩罚成本、购能成本和蓝氢提纯成本之和最小为优化目标的低碳经济调度模型;其次基于调度结果,从经济性、设备寿命损耗和节能环保性3个方面充分挖掘评价指标,构建综合评估指标体系,并利用基于AHP-熵-独立性权法的综合赋权法计算指标权重以增强赋权结果的合理性,进而计算出综合评价值。算例结果验证了所提综合评价方法的合理性,同时也表明绿氢蓝氢协同使综合能源系统具有较高的综合效益。
Abstract
Under the low-carbon transformation of energy structure, aiming at the problem of unclear comprehensive benefits under the synergistic utilization of green hydrogen and blue hydrogen, a comprehensive assessment method for the impact of green hydrogen and blue hydrogen on the integrated energy system is proposed. Firstly, a comprehensive integrated energy system structure of green hydrogen and blue hydrogen is constructed based on equipment such as electric to green hydrogen, gas to blue hydrogen, hydrogen-doped gas turbine and hydrogen storage tank, and then a low-carbon economic dispatching model is established with the sum of carbon trading cost, wind power operation and wind curtailment penalty cost, energy purchase cost and blue hydrogen purification cost as the optimization goal under the carbon trading mechanism. Secondly, based on the scheduling results, the evaluation indicators are fully excavated from three aspects: economy, equipment reliability and energy conservation with environmental protection, a comprehensive evaluation indicators system is constructed, and the weight synthesis determination method based on AHP-entropy-independence weight method is used to calculate the weights of indicators to enhance the rationality of the weight determination results, and then the comprehensive evaluation value is calculated. The results of the simulation example verify the rationality of the proposed comprehensive evaluation method, and also show that the synergy of green and blue hydrogen makes the integrated energy system have higher comprehensive benefits.
关键词
综合能源系统 /
制氢 /
绿氢 /
调度 /
综合评价 /
碳交易机制
Key words
integrated energy system /
hydrogen production /
green hydrogen /
scheduling /
comprehensive assessment /
carbon trading mechanism
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 郜捷, 宋洁, 王剑晓, 等. 支撑中国能源安全的电氢耦合系统形态与关键技术[J]. 电力系统自动化, 2023, 47(19): 1-15.
GAO J, SONG J, WANG J X, et al.Form and key technologies of integrated electricity-hydrogen system supporting energy security in China[J]. Automation of electric power systems, 2023, 47(19): 1-15.
[2] 丁剑, 方晓松, 宋云亭, 等. 碳中和背景下西部新能源传输的电氢综合能源网构想[J]. 电力系统自动化, 2021, 45(24): 1-9.
DING J, FANG X S, SONG Y T, et al.Conception of electricity and hydrogen integrated energy network for renewable energy transmission in Western China under background of carbon neutralization[J]. Automation of electric power systems, 2021, 45(24): 1-9.
[3] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520.
LI L R, PENG J, FU B, et al.Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta energiae solaris sinica, 2022, 43(6): 508-520.
[4] 曹蕃, 郭婷婷, 陈坤洋, 等. 风电耦合制氢技术进展与发展前景[J]. 中国电机工程学报, 2021, 41(6): 2187-2201.
CAO F, GUO T T, CHEN K Y, et al.Progress and development prospect of coupled wind and hydrogen systems[J]. Proceedings of the CSEE, 2021, 41(6): 2187-2201.
[5] 邹才能, 李建明, 张茜, 等. 氢能工业现状、技术进展、挑战及前景[J]. 天然气工业, 2022, 42(4): 1-20.
ZOU C N, LI J M, ZHANG X, et al.Industrial status, technological progress, challenges and prospects of hydrogen energy[J]. Natural gas industry, 2022, 42(4): 1-20.
[6] 张微. 制氢技术进展及经济性分析[J]. 当代石油石化, 2022, 30(7): 31-36.
ZHANG W.The progress and economic analysis of hydrogen production technology[J]. Petroleum & petrochemical today, 2022, 30(7): 31-36.
[7] 潘光胜, 顾钟凡, 罗恩博, 等. 新型电力系统背景下的电制氢技术分析与展望[J]. 电力系统自动化, 2023, 47(10): 1-13.
PAN G S, GU Z F, LUO E B, et al.Analysis and prospect of electrolytic hydrogen production technology under background of new power systems[J]. Automation of electric power systems, 2023, 47(10): 1-13.
[8] 陈明健, 陈胜, 王异成, 等. 考虑氢能绿证的电-氢综合能源系统机会约束优化调度[J]. 电力自动化设备, 2023, 43(12): 206-213.
CHEN M J, CHEN S, WANG Y C, et al.Chance constrained optimal scheduling of electric-hydrogen integrated energy system considering green certificate of hydrogen energy[J]. Electric power automation equipment, 2023, 43(12): 206-213.
[9] 张继红, 阚圣钧, 化玉伟, 等. 基于氢气储能的热电联供微电网容量优化配置[J]. 太阳能学报, 2022, 43(6): 428-434.
ZHANG J H, KAN S J, HUA Y W, et al.Capacity optimization of chp microgrid based on hydrogen energy storage[J]. Acta energiae solaris sinica, 2022, 43(6): 428-434.
[10] WU Q L, LI C X.Modeling and operation optimization of hydrogen-based integrated energy system with refined power-to-gas and carbon-capture-storage technologies under carbon trading[J]. Energy, 2023, 270: 126832.
[11] BU F F, WANG S Q, BAI H K, et al.An integrated demand response dispatch strategy for low-carbon energy supply park considering electricity-hydrogen-carbon coordination[J]. Energy reports, 2023, 9(Sup 7): 1092-1101.
[12] 潘光胜, 顾伟, 张会岩, 等. 面向高比例可再生能源消纳的电氢能源系统[J]. 电力系统自动化, 2020, 44(23): 1-10.
PAN G S, GU W, ZHANG H Y, et al.Electricity and hydrogen energy system towards accomodation of high proportion of renewable energy[J]. Automation of electric power systems, 2020, 44(23): 1-10.
[13] NOVOTNY V.Blue hydrogen can be a source of green energy in the period of decarbonization[J]. International journal of hydrogen energy, 2023, 48(20): 7202-7218.
[14] DURAKOVIC G, DEL GRANADO P C, TOMASGARD A. Are green and blue hydrogen competitive or complementary? Insights from a decarbonized European power system analysis[J]. Energy, 2023, 282: 128282.
[15] 国家发展和改革委员会、国家能源局. 氢能产业发展中长期规划(2021-2035年)[EB/OL]. [2022-3-23]. http://zfxxgk.nea.gov.cn/2022-03/23/c_1310525630.htm.
National Development and Reform Commission, National Energy Administration. Medium and long-term planning for hydrogen energy industry development (2021-2035)[EB/OL]. [2022-3-23]. http://zfxxgk.nea.gov.cn/2022-03/23/c_1310525630.htm.
[16] LI Z W, ZHAO Y Z, WU P.Optimal energy management of an integrated energy system with multiple hydrogen sources[J]. Frontiers in energy research, 2023, 11: 1270866.
[17] WANG X, WANG S X, ZHAO Q Y, et al.Low-carbon coordinated operation of electric-heat-gas -hydrogen interconnected system and benchmark design considering multi-energy spatial and dynamic coupling[J]. Energy, 2023, 279: 128042.
[18] 李颢然, 薛屹洵, 戴铁潮, 等. 考虑氢负荷响应的化工园区电-氢耦合系统协同优化调度[J]. 工程科学与技术, 2023, 55(1): 93-100.
LI H R, XUE Y X, DAI T C, et al.Collaborative optimal dispatch of electricity-hydrogen coupling system in chemical industry park considering hydrogen load response[J]. Advanced engineering sciences, 2023, 55(1): 93-100.
[19] 马勤勇, 钱白云, 董利江, 等. 掺氢比例对氢混天然气燃气轮机运行特性影响的研究[J]. 热能动力工程, 2022, 37(9): 41-49.
MA Q Y, QIAN B Y, DONG L J, et al.Research on the influence of hydrogen blending ratio on the operation characteristics of hydrogen blended fuel gas turbine[J]. Journal of engineering for thermal energy and power, 2022, 37(9): 41-49.
[20] 陈锦鹏, 胡志坚, 陈颖光, 等. 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J]. 电力自动化设备, 2021, 41(9): 48-55.
CHEN J P, HU Z J, CHEN Y G, et al.Thermoelectric optimization of integrated energy system considering ladder-type carbon trading mechanism and electric hydrogen production[J]. Electric power automation equipment, 2021, 41(9): 48-55.
[21] 丁显, 冯涛, 何广利, 等. 风电光伏波动性电源对电解水制氢电解槽影响的研究进展[J]. 储能科学与技术, 2022, 11(10): 3275-3284.
DING X, FENG T, HE G L, et al.Research progress of the influence of wind power and photovoltaic of power fluctuation on water electrolyzer for hydrogen production[J]. Energy storage science and technology, 2022, 11(10): 3275-3284.
[22] 刘洪, 李吉峰, 葛少云, 等. 多元储能系统运行策略对综合能源微网可靠性影响评估[J]. 电力系统自动化, 2019, 43(10): 36-43.
LIU H, LI J F, GE S Y, et al.Impact evaluation of operation strategies of multiple energy storage systems on reliability of multi-energy microgrid[J]. Automation of electric power systems, 2019, 43(10): 36-43.
基金
国家自然科学基金(52307098); 中央高校基本科研业务费专项资金(2023MS099)