基于SFLA和MSISSA-ANFIS的超短期光伏功率动态预测方法

李练兵, 高国强, 陶鹏, 张超, 赵莎莎, 陈伟光

太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 326-335.

PDF(1193 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1193 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 326-335. DOI: 10.19912/j.0254-0096.tynxb.2023-0957

基于SFLA和MSISSA-ANFIS的超短期光伏功率动态预测方法

  • 李练兵1, 高国强2, 陶鹏3, 张超3, 赵莎莎3, 陈伟光2
作者信息 +

ULTRA-SHORT-TERM PV POWER DYNAMIC PREDICTION METHOD BASED ON SFLA AND MSISSA-ANFIS

  • Li Lianbing1, Gao Guoqiang2, Tao Peng3, Zhang Chao3, Zhao Shasha3, Chen Weiguang2
Author information +
文章历史 +

摘要

为进一步提高光伏功率预测的精度,提出一种基于SFLA、MSISSA和ANFIS的超短期光伏功率日内动态预测模型。首先针对ANFIS模型受成员函数影响较大的缺点采用MSISSA对其进行优化,并结合SFLA选取相似日的方法,构建基于SFLA和MSISSA-ANFIS的功率预测模型。然后根据相关性较高的功率、气象特征与相似日集合构建特征向量对未来4 h的光伏功率进行预测。最后将从小型气象站获得的实时更新的未来气象数据存入数据库,每隔15 min预测一次,实现光伏功率的日内动态预测。结果表明所提方法提高了超短期光伏预测的精度。

Abstract

PV power output is characterized by volatility and randomness, and accurate power prediction has important application value for safe grid operation in the process of achieving grid connection. In this paper, an intra-day dynamic prediction model of ultra-short-term PV power based on SFLA, MSISSA and ANFIS is proposed. Firstly, MSISSA is used to optimize the ANFIS model for its drawback of being influenced by the membership function, and the power prediction model based on SFLA and MSISSA-ANFIS is constructed by combining the SFLA method of selecting similar days. Then a feature vector is constructed to predict the PV power for the next 4 h based on the set of power, meteorological features and similar days with high correlation. Finally, the real-time updated future meteorological data obtained from small weather stations are stored in the database and predicted every 15 min to realize the intra-day dynamic prediction of PV power. The results show that the proposed method improves the accuracy of ultra-short-term PV prediction。

关键词

光伏功率预测 / 时间序列 / 自适应神经模糊推理系统 / 算法优化 / 相似日选取

Key words

photovoltaic power prediction / time series / adaptive neuro-fuzzy inference system / algorithm optimization / similar day selection

引用本文

导出引用
李练兵, 高国强, 陶鹏, 张超, 赵莎莎, 陈伟光. 基于SFLA和MSISSA-ANFIS的超短期光伏功率动态预测方法[J]. 太阳能学报. 2024, 45(10): 326-335 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0957
Li Lianbing, Gao Guoqiang, Tao Peng, Zhang Chao, Zhao Shasha, Chen Weiguang. ULTRA-SHORT-TERM PV POWER DYNAMIC PREDICTION METHOD BASED ON SFLA AND MSISSA-ANFIS[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 326-335 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0957
中图分类号: TM615   

参考文献

[1] 贾凌云, 云斯宁, 赵泽妮, 等. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报, 2022, 43(12): 88-97.
JIA L Y, YUN S N, ZHAO Z N, et al.Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaris sinica, 2022, 43(12): 88-97.
[2] YANG X D, XU C B, ZHANG Y B, et al.Real-time coordinated scheduling for ADNs with soft open points and charging stations[J]. IEEE transactions on power systems, 2021, 36(6): 5486-5499.
[3] 刘甚臻, 马超. 基于小波变换和混合深度学习的短期光伏功率预测[J]. 可再生能源, 2023, 41(6): 744-749.
LIU S Z, MA C.Short-term photovoltaic power prediction based on wavelet transform and hybrid deep learning[J]. Renewable energy resources, 2023, 41(6): 744-749.
[4] ZHOU Y, ZHOU N R, GONG L H, et al.Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine[J]. Energy, 2020, 204: 117894.
[5] YUAN T H, ZHU N, SHI Y F, et al.Sample data selection method for improving the prediction accuracy of the heating energy consumption[J]. Energy and buildings, 2018, 158: 234-243.
[6] 孟安波, 陈嘉铭, 黎湛联, 等. 基于相似日理论和CSO-WGPR的短期光伏发电功率预测[J]. 高电压技术, 2021, 47(4): 1176-1184.
MENG A B, CHEN J M, LI Z L, et al.Short-term photovoltaic power generation prediction based on similar day theory and CSO-WGPR[J]. High voltage engineering, 2021, 47(4): 1176-1184.
[7] 张翔颖, 杨永标, 徐青山, 等. 基于多时段相似日理论的光伏功率组合预测方法[J]. 南方电网技术, 2023, 17(2): 57-65.
ZHANG X Y, YANG Y B, XU Q S, et al.Photovoltaic power combination prediction method based on multi-temporal similarity day theory[J]. Southern power system technology, 2023, 17(2): 57-65.
[8] DOLARA A, LEVA S, MANZOLINI G.Comparison of different physical models for PV power output prediction[J]. Solar energy, 2015, 119: 83-99.
[9] 张家安, 郝峰, 董存, 等. 基于两阶段不确定性量化的光伏发电超短期功率预测[J]. 太阳能学报, 2023, 44(1): 69-77.
ZHANG J A, HAO F, DONG C, et al.Ultra-short-term power forecasting of photovoltaic power generation based on two-stage uncertainty quantization[J]. Acta energiae solaris sinica, 2023, 44(1): 69-77.
[10] LIU Y W, FENG H, LI H Y, et al.An improved whale algorithm for support vector machine prediction of photovoltaic power generation[J]. Symmetry, 2021, 13(2): 212.
[11] LIU Z F, LI L L, TSENG M L, et al.Prediction short-term photovoltaic power using improved chicken swarm optimizer-extreme learning machine model[J]. Journal of cleaner production, 2020, 248: 119272.
[12] MOREIRA M O, BALESTRASSI P P, PAIVA A P, et al.Design of experiments using artificial neural network ensemble for photovoltaic generation forecasting[J]. Renewable and sustainable energy reviews, 2021, 135: 110450.
[13] 谭海旺, 杨启亮, 邢建春, 等. 基于XGBoost-LSTM组合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(8): 75-81.
TAN H W, YANG Q L, XING J C, et al.Photovoltaic power prediction based on combined XGBoost-LSTM model[J]. Acta energiae solaris sinica, 2022, 43(8): 75-81.
[14] 何志鹏. 基于改进CNN-LSTM的光伏发电功率预测及仿真研究[D]. 天津: 天津理工大学, 2022.
HE Z P.Research on power prediction and simulation of photovoltaic power generation based on improved CNN-LSTM[D]. Tianjin: Tianjin University of Technology, 2022.
[15] 栗然, 李广敏. 基于支持向量机回归的光伏发电出力预测[J]. 中国电力, 2008, 41(2): 74-78.
LI R, LI G M.Photovoltaic power generation output forecasting based on support vector machine regression technique[J]. Electric power, 2008, 41(2): 74-78.
[16] ROMERO A F, QUILUMBA F L, ARCOS H N.Short-term active power forecasting of a photovoltaic power plant using an artificial neural network[C]//2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM). Salinas, USA, 2017: 1-5.
[17] JU Y, LI J, SUN G Y.Ultra-short-term photovoltaic power prediction based on self-attention mechanism and multi-task learning[J]. IEEE access, 2020, 8: 44821-44829.
[18] ZHOU H X, ZHANG Y J, YANG L F, et al.Short-term photovoltaic power forecasting based on long short term memory neural network and attention mechanism[J]. IEEE access, 2019, 7: 78063-78074.
[19] ZHANG J L, LIU Z Y, CHEN T.Interval prediction of ultra-short-term photovoltaic power based on a hybrid model[J]. Electric power systems research, 2023, 216: 109035.
[20] 李正明, 梁彩霞, 王满商. 基于PSO-DBN神经网络的光伏短期发电出力预测[J]. 电力系统保护与控制, 2020, 48(8): 149-154.
LI Z M, LIANG C X, WANG M S.Short-term power generation output prediction based on a PSO-DBN neural network[J]. Power system protection and control, 2020, 48(8): 149-154.
[21] IBRAHIM I A, HOSSAIN M J, DUCK B C.An optimized offline random forests-based model for ultra-short-term prediction of PV characteristics[J]. IEEE transactions on industrial informatics, 2020, 16(1): 202-214.
[22] 杨茂, 冯帆. 基于马氏距离相似度量的光伏功率超短期预测方法的研究[J]. 可再生能源, 2021, 39(2): 175-181.
YANG M, FENG F.Ultra-short-term prediction of PV power based on similar days of Mahalanobis distance[J]. Renewable energy resources, 2021, 39(2): 175-181.
[23] 黄雨薇, 彭道刚, 姚峻, 等. 基于SSA和K均值的TD-BP神经网络超短期光伏功率预测[J]. 太阳能学报, 2021, 42(4): 229-238.
HUANG Y W, PENG D G, YAO J, et al.Ultra-short-term photovoltaic power forecast of TD-BP neural network based on SSA and K-means[J]. Acta energiae solaris sinica, 2021, 42(4): 229-238.
[24] RAHARJA M A, DARMAWAN I A, NILAKUSUMAWATI D E, et al.Analysis of membership function in implementation of adaptive neuro fuzzy inference system (ANFIS) method for inflation prediction[J]. Journal of physics: conference series, 2021, 1722(1): 012005.

基金

河北省省级科技计划(20314301D)

PDF(1193 KB)

Accesses

Citation

Detail

段落导航
相关文章

/