不同长径比填充床蓄冷器储释冷特性研究

孙潇, 罗志斌, 蔡春荣, 朱光涛, 裴爱国

太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 745-751.

PDF(1226 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1226 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 745-751. DOI: 10.19912/j.0254-0096.tynxb.2023-0971

不同长径比填充床蓄冷器储释冷特性研究

  • 孙潇1,2, 罗志斌1, 蔡春荣1, 朱光涛1, 裴爱国3
作者信息 +

STUDY ON COLD STORAGE CHARACTERISTICS OF PACKED BED REGENERATOR WITH DIFFERENT ASPECT RATIO

  • Sun Xiao1,2, Luo Zhibin1, Cai Chunrong1, Zhu Guangtao1, Pei Aiguo3
Author information +
文章历史 +

摘要

在相同操作条件下模拟分析16组具有相同总体积、不同长径比的蓄冷器(组),比较准稳态的储冷量、释冷量、储释冷效率。结果表明:经过20次储释冷循环后达到准稳态。单体蓄冷器长径比从0.6增加到3时,储冷量/释冷量逐渐增加,但储释冷效率逐渐降低。并联数量从1增加到6时,蓄冷器组的储冷量、释冷量、储释冷效率均呈下降趋势。设计蓄冷器几何结构时,建议采用长径比为2的单体形式或串联形式。若必须并联,应尽量减小并联数量。

Abstract

16 sets of regenerators with the same total volume and different aspect ratio are studied under the same operating conditions. The quasi-steady state cold charge capacity, cold discharge capacity and charge-discharge efficiency are compared. The results show that the performance of the regenerator reaches a quasi-steady state after 20 cycles. When the aspect ratio of the single regenerator increases from 0.6 to 3, the cold charging/cold discharging capacity gradually increases, but the charge-discharge efficiency gradually decreases. When the parallel number of the regenerator increases from 1 to 6, the cold charge, cold discharge and cooling efficiency of the regenerator group all decrease. When designing the geometric structure of the regenerator, it is recommended to consider the single form or series form with an aspect ratio of 2. If a parallel connection is unavoidable, the number of parallel connections should be reduced as much as possible.

关键词

传热 / 数值模拟 / 填充床 / 蓄冷 / 长径比

Key words

heat transfer / numerical simulation / packed beds / cold storage / aspect ratio

引用本文

导出引用
孙潇, 罗志斌, 蔡春荣, 朱光涛, 裴爱国. 不同长径比填充床蓄冷器储释冷特性研究[J]. 太阳能学报. 2024, 45(10): 745-751 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0971
Sun Xiao, Luo Zhibin, Cai Chunrong, Zhu Guangtao, Pei Aiguo. STUDY ON COLD STORAGE CHARACTERISTICS OF PACKED BED REGENERATOR WITH DIFFERENT ASPECT RATIO[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 745-751 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0971
中图分类号: TK02   

参考文献

[1] 谢英柏, 薛晓东. 液化空气储能与发电一体化系统的性能分析[J]. 太阳能学报, 2020, 41(4): 333-339.
XIE Y B, XUE X D.Performance analysis on an integrated system of liquefied air energy storage and electricity production[J]. Acta energiae solaris sinica, 2020, 41(4): 333-339.
[2] WANG L, LIN X P, ZHANG H, et al.Brayton-cycle-based pumped heat electricity storage with innovative operation mode of thermal energy storage array[J]. Applied energy, 2021, 291: 116821.
[3] MORGAN R, NELMES S, GIBSON E, et al.Liquid air energy storage-analysis and first results from a pilot scale demonstration plant[J]. Applied energy, 2015, 137: 845-853.
[4] AMEEN M T, MA Z W, SMALLBONE A, et al.Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency[J]. Applied energy, 2023, 333: 120580.
[5] DUTTA R, SANDILYA P.Experimental investigations on cold recovery efficiency of packed-bed in cryogenic energy storage system[J]. IOP conference series: materials science and engineering, 2020, 755(1): 012103.
[6] 刘易, 武威, 罗勇, 等. 旋转填充床反应器流体流动可视化研究进展[J]. 化工学报, 2019, 70(10): 3663-3676.
LIU Y, WU W, LUO Y, et al.Visual study of fluid flow in rotating packed bed reactors: a review[J]. CIESC journal, 2019, 70(10): 3663-3676.
[7] GAUTAM A, SAINI R P.Experimental investigation of heat transfer and fluid flow behavior of packed bed solar thermal energy storage system having spheres as packing element with pores[J]. Solar energy, 2020, 204: 530-541.
[8] 赵攀, 王佩姿, 许文盼, 等. 两级填充床蓄热器式绝热压缩空气储能系统变工况特性研究[J]. 太阳能学报, 2022, 43(1): 294-299.
ZHAO P, WANG P Z, XU W P, et al.Off-design performance analysis of A-CAES system with two-stage packed bed heat storage unit[J]. Acta energiae solaris sinica, 2022, 43(1): 294-299.
[9] HÜTTERMANN L, SPAN R. Influence of the heat capacity of the storage material on the efficiency of thermal regenerators in liquid air energy storage systems[J]. Energy, 2019, 174: 236-245.
[10] 李国跃, 林曦鹏, 王亮, 等. 储释冷循环对岩石材料性能的影响[J]. 储能科学与技术, 2020, 9(4): 1074-1081.
LI G Y, LIN X P, WANG L, et al.Effects of the charge-discharge cold cycles on performance of the rock materials[J]. Energy storage science and technology, 2020, 9(4): 1074-1081.
[11] XU C, LI X, WANG Z F, et al.Effects of solid particle properties on the thermal performance of a packed-bed molten-salt thermocline thermal storage system[J]. Applied thermal engineering, 2013, 57(1/2): 69-80.
[12] CASCETTA M, CAU G, PUDDU P, et al.Numerical investigation of a packed bed thermal energy storage system with different heat transfer fluids[J]. Energy procedia, 2014, 45: 598-607.
[13] HÄNCHEN M, BRÜCKNER S, STEINFELD A. High-temperature thermal storage using a packed bed of rocks-Heat transfer analysis and experimental validation[J]. Applied thermal engineering, 2011, 31(10): 1798-1806.
[14] LIN X P, WANG L, XIE N N, et al.Thermodynamic analysis of the cascaded packed bed cryogenic storage based supercritical air energy storage system[J]. Energy procedia, 2019, 158: 5079-5085.
[15] 李国跃. 超临界压缩空气储能填充床分级蓄冷方法研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2020.
LI G Y.Research on cascaded packed bed cryogenic storage method based supercritical air energy storage system[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2020.
[16] LIAO Z R, ZHONG H, XU C, et al.Investigation of a packed bed cold thermal storage in supercritical compressed air energy storage systems[J]. Applied energy, 2020, 269: 115132.
[17] CHAI L, LIU J, WANG L, et al.Cryogenic energy storage characteristics of a packed bed at different pressures[J]. Applied thermal engineering, 2014, 63(1): 439-446.
[18] 陈梦东, 徐桂芝, 胡晓, 等. 超临界压缩空气堆积床蓄冷罐循环性能分析[J]. 动力工程学报, 2021, 41(3): 236-243.
CHEN M D, XU G Z, HU X, et al.Cycle performance analysis of packed bed cold energy storage tank with supercritical compressed air[J]. Journal of Chinese Society of Power Engineering, 2021, 41(3): 236-243.
[19] SCIACOVELLI A, VECCHI A, DING Y.Liquid air energy storage(LAES) with packed bed cold thermal storage-from component to system level performance through dynamic modelling[J]. Applied energy, 2017, 190: 84-98.
[20] BERGMAN T L, LAVINE A S, INCROPERA F P, et al.Introduction to heat transfer[M]. 6th ed. New York: Wiley, 2011.
[21] NELLIS G, KLEIN S A.Heat transfer[M]. Cambridge: Cambridge University Press, 2009.
[22] MORGAN R, ROTA C, PIKE-WILSON E, et al.The modelling and experimental validation of a cryogenic packed bed regenerator for liquid air energy storage applications[J]. Energies, 2020, 13(19): 5155.
[23] 金翼, 王乐, 杨岑玉, 等. 堆积床储冷系统循环性能分析[J]. 储能科学与技术, 2017, 6(4): 708-718.
JIN Y, WANG L, YANG C Y, et al.Cycle performance of a packed bed based cold storage device[J]. Energy storage science and technology, 2017, 6(4): 708-718.
[24] SCIACOVELLI A, SMITH D, NAVARRO M E, et al.Performance analysis and detailed experimental results of the first liquid air energy storage plant in the world[J]. Journal of energy resources technology, 2018, 140(2): 020908.

基金

中国能建广东院科技项目(EV10071W); 中国能源建设股份有限公司重大科技项目(CEEC2021-KJZX-06)

PDF(1226 KB)

Accesses

Citation

Detail

段落导航
相关文章

/