利用Fluent流体力学CFD软件建立海底电缆冲刷的精细化水动力数值模型,以实测海流数据作为输入条件,模拟真实海况条件下的海缆冲刷过程,其次通过数据拟合获得海缆悬空长度和冲刷时长之间的定性定量关系,最后通过OrcaFlex水动力软件分析海缆裸露后的应力状态变化过程,判断海底电缆裸露后的运行安全状态。
Abstract
The analysis and research of local erosion and stress state of submarine cables is crucial for the reliable operation of offshore wind farms. During the laying process of submarine cables, the seabed topography may occur the local changes, leading to changes in the hydrodynamic boundary conditions of the seabed, causing imbalanced sediment transport in the surrounding area of the buried submarine cables. When the submarine cables are exposed, the erosion phenomenon will gradually strengthen, and even cause stress damage due to the large suspension of the submarine cables. Firstly, this article first uses Fluent fluid dynamics CFD software to establish a refined hydrodynamic numerical model of submarine cable erosion, using measured ocean current data as input conditions to simulate the process of submarine cable erosion under real sea conditions. Secondly, the qualitative and quantitative relationship between the suspended length of submarine cables and the duration of erosion is obtained through data fitting. Finally, the stress state change process of submarine cables after exposure is analyzed using OrcaFlex hydrodynamic software. The research results of this article can provide a certain scientific basis for the reliable operation of submarine cables in offshore wind farms.
关键词
海底电缆 /
海上风电场 /
数值模型 /
局部冲刷 /
应力状态
Key words
submarine cable /
offshore wind farms /
numerical model /
local scouring /
stress state
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WHITEHOUSE R.Scour at marine structures: a manual for practical applications[M]. Landon: Thomas Telford Ltd, 1998.
[2] GB 50217—2007, 电力电缆设计敷设规范[S].
GB 50217—2007, Code for design of cables of electric engineering[S].
[3] 温定筠, 吕景顺, 范迪铭, 等. 交联聚乙烯(XLPE)电缆交流耐压试验时间参数探讨[J]. 电网与清洁能源, 2010, 26(8): 15-17, 33.
WEN D J, LYU J S, FAN D M, et al.Discussions on time parameters for alternating voltage tests on XLPE cables[J]. Power system and clean energy, 2010, 26(8): 15-17, 33.
[4] 曹淑刚, 张吉, 孙小钎, 等. 考虑弯曲刚度的高压海缆敷设受力分析[J]. 太阳能学报, 2019, 40(10): 3009-3016.
CAO S G, ZHANG J, SUN X Q, et al.Tension analysis of high voltage submarine cable laying considering bending stiffness[J]. Acta energiae solaris sinica, 2019, 40(10): 3009-3016.
[5] 陶伟, 刘溟江, 周国栋, 等. 海床冲刷对海上风电海缆及弯曲限制器的影响研究[J]. 太阳能学报, 2022, 43(11): 186-193.
TAO W, LIU M J, ZHOU G D, et al.Influence of scour on subsea cables and bend restrictors of offshore wind farm[J]. Acta energiae solaris sinica, 2022, 43(11): 186-193.
[6] BHINDER M A, BABARIT A, GENTAZ L, et al. Effect of viscous forces on the performance of a surging wave energy converter[C]// Proceedings of the Twenty-second (2012)International Offshore and Polar Engineering Conference, Rhodes, Greece, 2012.
[7] LI F, CHENG L.Numerical simulation of pipeline local scour with lee-wake effects[J]. International journal of offshore and polar engineering, 2000, 10(3): 195-199.
[8] 左书华, 张娜, 黄玉新, 等. 广东湛江外罗海域水沙环境及岸滩演变[J]. 海洋地质前沿, 2016, 32(7): 44-50.
ZUO S H, ZHANG N, HUANG Y X, et al.Water and sediments budget and beach evolvement of the area near Wailuo of Zhanjiang, Guangdong Province[J]. Marine geology frontiers, 2016, 32(7): 44-50.
[9] HANSEN E A, FREDSBE J, MAO Y.Two-dimensional scour below pipelines[C]//Proceeding 5th Int. Symp. On Offshore Mech. And Arctic Engrg., ASME, Tokyo, Japan, 1986: 670-678.
[10] 史舒婧. 海底管线三维冲刷的数值模拟[D]. 上海: 上海交通大学, 2019.
SHI S J.Three-dimentional modeling of scour around underwater pipes[D]. Shanghai: Shanghai Jiao Tong University, 2019.
[11] CAO Y G, BAI Y C, WANG J Q, et al.Prediction of scour depth around offshore pipelines in the South China Sea[J]. Journal of marine science and applicatio, 2015, 14(1): 83-92.
[12] 王文超, 张建民, 赵囿林, 等. 扁钢丝铠装光纤复合海缆拉伸试验与仿真分析[J]. 高电压技术, 2019, 45(11): 3467-3473.
WANG W C, ZHANG J M, ZHAO Y L, et al.Tension test and simulation analysis on flat-steel-wire-armoured optical fiber composite submarine cable[J]. High voltage engineering, 2019, 45(11): 3467-3473.
基金
广东省2021年促进经济高质量发展海洋经济专项(GDNRC[2021]41)