计及源荷不确定性的电力系统静态电压稳限预警方法研究

任惠, 王希, 田磊, 赵明君, 常喜强, 甄钊

太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 249-258.

PDF(2215 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2215 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 249-258. DOI: 10.19912/j.0254-0096.tynxb.2023-0974

计及源荷不确定性的电力系统静态电压稳限预警方法研究

  • 任惠1, 王希1, 田磊1, 赵明君2, 常喜强2, 甄钊1
作者信息 +

STATIC VOLTAGE STABILITY LIMIT WARNING METHOD FOR POWER SYSTEM ACCOUNTING FOR SOURCE-LOAD UNCERTAINTY

  • Ren Hui1, Wang Xi1, Tian Lei1, Zhao Mingjun2, Chang Xiqiang2, Zhen Zhao1
Author information +
文章历史 +

摘要

针对源荷双侧不确定性问题,对电力系统静态电压稳定极限进行预警研究。首先通过数学推导与理论分析证明快慢系统在分叉及噪声双重诱导发生临界转变的过程中,系统变量的方差系数趋势变化显著。由于存在噪声诱导失稳,电压变化趋势观测难度增大,固定阈值趋势检测方法会失效。其次,对新能源电力系统节点电压的临界转变特点和扰动情况进行分析,提出基于临界转变电压崩溃预警方法。针对噪声导致的趋势预测困难问题,基于量测数据,利用贝叶斯变点检测,对节点电压的方差进行实时监测,并根据贝叶斯变点检测得到的概率在趋势发生显著变化之初预警节点电压崩溃,并通过仿真计算验证该方法的有效性。

Abstract

Aiming at the uncertainty on both source and load sides, the study performs the early warning of power system static voltage instability. The study first demonstrates mathematical derivation and theoretical analysis that the trend of variance coefficients of system variables changes significantly during the critical transition occurring in fast and slow systems with bifurcation and noise dual induced. Considering the noise-induced instability, the trend is more difficult to be observed and the trend detection based on fixed threshold will fail. Secondly, the critical transition characteristics and perturbation of the node voltage of the new energy power system are analyzed,and the early warning method based on the critical transition voltage collapse is proposed. For the problem of difficult trend prediction caused by noise,based on the measurement data, Bayesian change point detection is utilized to monitor the variance of the node voltage in real time,and the probability obtained from Bayesian change point detection is used to warn of the node voltage collapse at the beginning of the significant change of the trend,and the validity of the method is verified through simulation calculation.

关键词

不确定性分析 / 可再生能源 / 电压测量 / 临界转变 / 电力系统稳定 / 预警系统

Key words

uncertainty analysis / renewable energy / voltage measurement / critical transition / electric power system stability / alarm system

引用本文

导出引用
任惠, 王希, 田磊, 赵明君, 常喜强, 甄钊. 计及源荷不确定性的电力系统静态电压稳限预警方法研究[J]. 太阳能学报. 2024, 45(10): 249-258 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0974
Ren Hui, Wang Xi, Tian Lei, Zhao Mingjun, Chang Xiqiang, Zhen Zhao. STATIC VOLTAGE STABILITY LIMIT WARNING METHOD FOR POWER SYSTEM ACCOUNTING FOR SOURCE-LOAD UNCERTAINTY[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 249-258 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0974
中图分类号: TM71   

参考文献

[1] 孔贺, 李业成, 张哲, 等. 阻抗模裕度指标在新能源多馈入系统静态电压稳定评估的适应性分析[J]. 中国电机工程学报, 2024, 44(8): 3002-3016.
KONG H, LI Y C, ZHANG Z, et al.Adaptability analysis of impedance modulus margin index for static voltage stability evaluation of multi-infeed renewable energy power system[J]. Proceedings of the CSEE, 2024, 3(30): 3002-3016.
[2] 李生虎, 夏伟健, 叶剑桥, 等. 静态电压稳定分析中L指标与特征值换算关系及L阈值确定方法[J]. 电网技术, 2023, 47(9): 3828-3837.
LI S H, XIA W J, YE J Q, et al.Exchange relation with eigenvalues and threshold determination of L index for power system static voltage stability analysis[J]. Power system technology, 2023, 47(9): 3828-3837.
[3] 王冠中, 董炜, 周瑀涵, 等. 电网强度视角下的新能源电力系统鲁棒稳定分析[J]. 中国电机工程学报, 2022, 42(23): 8454-8465.
WANG G Z, DONG W, ZHOU Y H, et al.Robust stability analysis for renewable energy power systems from the perspective of grid strength[J]. Proceedings of the CSEE, 2022, 42(23): 8454-8465.
[4] 李明, 张兴, 郭梓暄, 等. 弱电网下基于电网阻抗自适应的双模式并网稳定控制策略[J].太阳能学报, 2021, 42(7): 86-93.
LI M, ZHANG X, GUO Z X, et al.Grid impedance adaption dual mode grid-connected stability control strategy in a weak grid[J]. Acta energiae solaris sinica, 2021, 42(7): 86-93.
[5] 杨黎晖, 马西奎. 基于分岔理论的含双馈风电机组的电力系统电压稳定性分析[J]. 电工技术学报, 2012, 27(9): 1-8.
YANG L H, MA X K.Analysis on voltage stability of power system with doubly fed induction generator wind turbine based on bifurcation theory[J]. Transactions of China Electrotechnical Society, 2012, 27(9): 1-8.
[6] GHANAVATI G, HINES P D H, LAKOBA T I, et al. Understanding early indicators of critical transitions in power systems from autocorrelation functions[J]. IEEE transactions on circuits and systems I: regular Papers, 2014, 61(9): 2747-2760.
[7] COTILLA-SANCHEI E, HINES P D H, DANFORTH C M. Predicting critical transitions from time series synchrophasor data[J]. IEEE Transactions on smart grid, 2012, 3(4): 1832-1840.
[8] PODOLSKY D, TURITSYN K.Critical slowing-down as indicator of approach to the loss of stability[C]//2014 IEEE International Conference on Smart Grid Communications, Venice, Italy, 2014: 19-24.
[9] 郑乐, 胡伟, 闵勇, 等. 基于临界转变理论的电力系统电压稳定分析与预警[J]. 中国电机工程学报, 2016, 36(24): 6820-6827, 6937.
ZHENG L, HU W, MIN Y, et al.Research on power systems voltage stability assessment and prediction based on critical transition[J]. Proceedings of the CSEE, 2016, 36(24): 6820-6827, 6937.
[10] 万凯遥, 姜彤, 冯卓诚, 等. 静态电压稳定分岔点的直接识别算法[J]. 中国电机工程学报, 2020, 40(20): 6548-6557.
WAN K Y, JIANG T, FENG Z C, et al.A method of directly identifying the steady-state voltage stability bifurcation[J]. Proceedings of the CSEE, 2020, 40(20): 6548-6557.
[11] 黎晓, 刘崇茹, 蔡晖, 等. 电力系统静态电压稳定临界点的快速计算方法. 华北电力大学学报(自然科学版), 2022, 49(3): 44-54.
LI X, LIU C R, CAI H, et al.Fast calculation method for critical point of static voltage stability in power system[J]. Journal of North China Electric Power University(natural science edition), 2022, 49(3): 44-54.
[12] DOSE V, MENZEL A.Bayesian analysis of climate change impacts in phenology[J]. Global change biology, 2004, 10(2): 259-272.
[13] HEßLER M, KAMPS O. Bayesian on-line anticipation of critical transitions[J]. New journal of physics, 2022, 24(6): 063021.
[14] 蔡万通, 刘文颖, 王方雨, 等. 基于临界慢化理论的电力系统自组织临界影响因素阈值计算方法[J]. 电工技术学报, 2019, 34(5): 1068-1077.
CAI W T, LIU W Y, WANG F Y, et al.Computing method of the critical value of power system’s self- organized critical factors based on critical slowing down theory[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1068-1077.
[15] LIU Y, XU C Y, LIN Z H, et al.Constructing an energy function for power systems with DFIGWT generation based on a synchronous-generator-mimicking model[J]. CSEE journal of power and energy systems, 2022, 8(1): 64-75.
[16] SCHEFFER M, BASCOMPTE J, BROCK W A, et al.Early-warning signals for critical transitions[J]. Nature, 2009, 461(7260): 53-59.
[17] REN H, WATTS D.Early warning signals for critical transitions in power systems[J]. Electric power systems research, 2015, 124: 173-180.
[18] 范佳琪. 基于临界相变的电力系统连锁故障早期预警机理研究[D]. 北京: 华北电力大学, 2015.
FAN J Q. study on early warning mechanism of power system cascade fault based on critical phase transition[D]. Beijing: North China Electric Power University, 2015.
[19] KUEHN C.A mathematical framework for critical transitions: normal forms, variance and applications[J]. Journal of nonlinear science, 2013, 23(3): 457-510.
[20] KUEHN C.A mathematical framework for critical transitions:bifurcations, fast-slow systems and stochastic dynamics[J]. Physica D: nonlinear phenomena, 2011, 240(12): 1020-1035.
[21] 万玉良, 尚国政, 刘蒙聪, 等. 考虑源荷不确定性的分时电价动态修正机制研究[J]. 太阳能学报, 2022, 43(11): 493-500.
WAN Y L, SHANG G Z, LIU M C, et al.Research on dynamic correction mechanism of time-of-use electricity price considering uncertainty of source and load[J]. Acta energiae solaris sinica, 2022, 43(11): 493-500.
[22] 吴振威, 蒋小平, 马会萌, 等. 多时间尺度的光伏出力波动特性研究[J]. 现代电力, 2014, 31(1): 58-61.
WU Z W, JIANG X P, MA H M, et al.Study on fluctuations characteristics of photovoltaic power output in different time scales[J]. Modern electric power, 2014, 31(1): 58-61.
[23] 郑晓钿, 夏成军. 基于半不变量及最大熵原理的静态电压稳定概率分析[J]. 太阳能学报, 2022, 43(37): 126-132.
ZHENG X T, XIA C J.Probability analysis of static voltage stability based on semi-invariant and maximum entropy principle[J]. Acta energiae solaris sinica, 2022, 43(3): 126-132.
[24] 刘运鑫, 姚良忠, 廖思阳, 等. 光伏渗透率对电力系统静态电压稳定性影响研究[J].中国电机工程学报, 2022, 42(15): 5484-5497.
LIU Y X, YAO L Z, LIAO S Y, et al.Study on the impact of photovoltaic penetration on power system static voltage stability[J]. Proceedings of the CSEE, 2022,42(15):5484-5497.
[25] FEDEFICO M.Power System Analysis Toolbox Documentation for PSAT[EB/OL]. [2019-8-01].http://faraday1.ucd.ie/psat.
[26] 易文飞, 张艺伟, 曾博, 等. 多形态激励型需求侧响应协同平衡可再生能源波动的鲁棒优化配置[J]. 电工技术学报, 2018, 33(23): 5541-5554.
YI W F, ZHANG Y W, ZENG B, et al.Robust optimization allocation for multi-type incentive-based demand response collaboration to balance renewable energy fluctuations[J]. Transactions of China Electrotechnical Society, 2018, 33(23): 5541-5554.

基金

国家自然科学基金青年基金(51107040)

PDF(2215 KB)

Accesses

Citation

Detail

段落导航
相关文章

/