基于状态扩张输入输出动态模态分解的风力机尾流降阶模型

魏赏赏, 李智寒, 陈一凯, 许昌, 赵振宙, 许波峰

太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 580-587.

PDF(1798 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1798 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 580-587. DOI: 10.19912/j.0254-0096.tynxb.2023-0975

基于状态扩张输入输出动态模态分解的风力机尾流降阶模型

  • 魏赏赏, 李智寒, 陈一凯, 许昌, 赵振宙, 许波峰
作者信息 +

REDUCED-ORDER WAKE MODEL OF WIND TURBINES BASED ON STATE EXPANSION INPUT-OUTPUT DYNAMIC MODE DECOMPOSITION

  • Wei Shangshang, Li Zhihan, Chen Yikai, Xu Chang, Zhao Zhenzhou, Xu Bofeng
Author information +
文章历史 +

摘要

基于数据驱动范式,采用输入输出动态模态分解方法(IODMD)构建机组偏航动作下风力机尾流降阶模型,此外为应对传统输入输出动态模态分解方法(IODMD)在局部流场精度不足的问题,提出扩张风力机转速的输入输出动态模态分解方法(EIODMD),从而使得降阶模型能充分利用机组运行特性。研究结果表明,所提EIODMD较传统IODMD方法在流场重构与预测精度方面均有所提高,证明了EIODMD尾流降阶模型的优越性。

Abstract

Based on the data and considering the influence of yaw control on wake model, this paper constructs a reduced-order wind turbine wake model with input and output. At the same time, to solve the inefficiency of the input-output dynamic mode decomposition (IODMD) method in reconstructing the local flow field, an extended state input-output dynamic mode decomposition (EIODMD) approach is proposed by integrating wind turbine speed, so that the characteristics of the wind turbines can be considered in the mode decomposition. The results show that compared with the rtaditional IODMD method, the proposed EIODMD can improve the flow field reconstruction and prediction accuracy, demonstrating the superiority of the reduced-order model based on the proposed EIODMD approach.

关键词

风力机 / 尾流 / 动态模态分解 / 状态扩张 / 降阶模型

Key words

wind turbines / wakes / dynamic mode decomposition / state expansion / reduced-order model

引用本文

导出引用
魏赏赏, 李智寒, 陈一凯, 许昌, 赵振宙, 许波峰. 基于状态扩张输入输出动态模态分解的风力机尾流降阶模型[J]. 太阳能学报. 2024, 45(10): 580-587 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0975
Wei Shangshang, Li Zhihan, Chen Yikai, Xu Chang, Zhao Zhenzhou, Xu Bofeng. REDUCED-ORDER WAKE MODEL OF WIND TURBINES BASED ON STATE EXPANSION INPUT-OUTPUT DYNAMIC MODE DECOMPOSITION[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 580-587 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0975
中图分类号: TK8   

参考文献

[1] GOLAIT N, MOHARIL R M, KULKARNI P S.Wind electric power in the world and perspectives of its development in India[J]. Renewable and sustainable energy reviews, 2009, 13(1): 233-247.
[2] 许昌. 风电场微观尺度空气动力学: 基本理论与应用[M]. 北京: 中国水利水电出版社, 2018.
XU C.Micro-scale aerodynamics of wind farms: basic theory and application[M]. Beijing: China Water & Power Press, 2018.
[3] 侯亚丽, 汪建文, 王强, 等. 基于大涡模拟的风力机尾流湍流特征的研究[J]. 太阳能学报, 2015, 36(8): 1818-1824.
HOU Y L, WANG J W, WANG Q, et al.Study on wake turbulence characteristics of wind turbine base on large eddy simulation[J]. Acta energiae solaris sinica, 2015, 36(8): 1818-1824.
[4] ROLLET-MIET P, LAURENCE D, FERZIGER J.LES and RANS of turbulent flow in tube bundles[J]. International journal of heat and fluid flow, 1999, 20(3): 241-254.
[5] LÜBCKE H, SCHMIDT S, RUNG T, et al. Comparison of LES and RANS in bluff-body flows[J]. Journal of wind engineering and industrial aerodynamics, 2001, 89(14-15): 1471-1485.
[6] 田琳琳, 赵宁, 钟伟. 风力机尾流相互干扰的数值模拟[J]. 太阳能学报, 2012, 33(8): 1315-1320.
TIAN L L, ZHAO N, ZHONG W.Numerical simulation of wake interactions of wind turbines[J]. Acta energiae solaris sinica, 2012, 33(8): 1315-1320.
[7] 曹娜, 于群, 王伟胜, 等. 风电场尾流效应模型研究[J]. 太阳能学报, 2016, 37(1): 222-229.
CAO N, YU Q, WANG W S, et al.Research on wake effect model of wind farm[J]. Acta energiae solaris sinica, 2016, 37(1): 222-229.
[8] EMANUEL G, GAD-EL-HAK M. Analytical fluid dynamics, second edition[J]. Applied mechanics reviews, 2001, 54(4): B68.
[9] BOERSMA S, DOEKEMEIJER B, VALI M, et al.A control-oriented dynamic wind farm model: WFSim[J]. Wind energy science, 2018, 3(1): 75-95.
[10] LARSEN G, AAGAARD H M, BINGÖL F, et al. Dynamic wake meandering modeling[M]. Roskilde: Riso Natioual Laboratory, 2007.
[11] MODIN-EDMAN A K, ÖBORN I, SVERDRUP H. FARMFLOW: a dynamic model for phosphorus mass flow, simulating conventional and organic management of a Swedish dairy farm[J]. Agricultural systems, 2007, 94(2): 431-444.
[12] LUMLEY J L .The structure of inhomogeneous turbulent flows[C]//Atmospheric Turbulence and Radio Wave Propagation, Moscow, Russia, 1965.
[13] BERKOOZ G, HOLMES P, LUMLEY J L.The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual review of fluid mechanics, 1993, 25: 539-575.
[14] WANG Z, AKHTAR I, BORGGAARD J, et al.Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison[J]. Computer methods in applied mechanics and engineering, 2012, 237: 10-26.
[15] ÖSTH J, NOACK B, KRAJNOVIĆ S, et al.On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body[J]. Journal of fluid mechanics, 2014, 747: 518-544.
[16] PERRIN R, BRAZA M, CID E, et al.Obtaining phase averaged turbulence properties in the near wake of a circular cylinder at high Reynolds number using POD[J]. Experiments in fluids, 2007, 43(2): 341-355.
[17] HALL K C.Eigenanalysis of unsteady flows about airfoils, cascades, and wings[J]. AIAA journal, 1994, 32(12): 2426-2432.
[18] DOWELL E H.Eigenmode analysis in unsteady aerodynamics - Reduced-order models[J]. AIAA journal, 1996, 34(8): 1578-1583.
[19] SCHMID P, ECOLE P.Dynamic mode decomposition of numerical and experimental data[J]. Journal of fluid mechanics, 2008, 656: 5-28.
[20] SCHMID P J.Dynamic mode decomposition of numerical and experimental data[J]. Journal of fluid mechanics, 2010, 656: 5-28.
[21] 寇家庆. 非定常气动力建模与流场降阶方法研究[D]. 西安: 西北工业大学, 2018.
KOU J Q.Reduced-order modeling methods for unsteady aerodynamics and fluid flows[D]. Xi’an: Northwestern Polytechnical University, 2018.
[22] MEZIĆ I.Spectral properties of dynamical systems, model reduction and decompositions[J]. Nonlinear dynamics, 2005, 41(1): 309-325.
[23] KOOPMAN B O.Hamiltonian systems and transformation in Hilbert space[J]. Proceedings of the national academy of sciences of the United States of America, 1931, 17(5): 315-318.
[24] MEZIĆ I.Analysis of fluid flows via spectral properties of the koopman operator[J]. Annual review of fluid mechanics, 2013, 45: 357-378.
[25] SUN C, TIAN T, ZHU X C, et al.Investigation of the near wake of a horizontal-axis wind turbine model by dynamic mode decomposition[J]. Energy, 2021, 227: 120418.
[26] CASSAMO N, VAN WINGERDEN J W. On the potential of reduced order models for wind farm control: a koopman dynamic mode decomposition approach[J]. Energies, 2020, 13(24): 6513.
[27] 刘鹏寅, 陈进格, 沈昕, 等. 深度动态失速流场的DMD分析[J]. 太阳能学报, 2018, 39(9): 2477-2485.
LIU P Y, CHEN J G, SHEN X, et al.Dmd analysis of flow field under deep dynamic stall condition[J]. Acta energiae solaris sinica, 2018, 39(9): 2477-2485.
[28] TIRUNAGARI S, KOUCHAKI S, POH N, et al.Dynamic mode decomposition for univariate time series: analysing trends and forecasting[OE/J]. https://hal.science/hal-01463744v12017.
[29] CHURCHFIELD M J, LEE S, MICHALAKES J, et al.A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics[J]. Journal of turbulence, 2012, 13: 14.
[30] CASSAMO N, VAN WINGERDEN J W. Model predictive control for wake redirection in wind farms: a koopman dynamic mode decomposition approach[C]//2021 American Control Conference (ACC), New Orleans, LA, USA, 2021: 1776-1782.
[31] WILLIAMS M O, KEVREKIDIS I G, ROWLEY C W.A data-driven approximation of the koopman operator: extending dynamic mode decomposition[J]. Journal of nonlinear science, 2015, 25(6): 1307-1346.

基金

国家自然科学基金联合基金(U22B20112); 中央高校基本科研业务费专项资金(423162); 江苏省政策引导类计划(国际科技合作/港澳台科技合作)(BZ2021019)

PDF(1798 KB)

Accesses

Citation

Detail

段落导航
相关文章

/