计及初始荷电状态的含混合储能微电网双层调度研究

刘晓艳

太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 416-420.

PDF(1550 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1550 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 416-420. DOI: 10.19912/j.0254-0096.tynxb.2023-0984

计及初始荷电状态的含混合储能微电网双层调度研究

  • 刘晓艳1,2
作者信息 +

TWO-LAYER DISPATCH OF MICROGRID WITH HYBRID ENERGY STORAGE CONSIDERING INITIAL STATE OF CHARGE

  • Liu Xiaoyan1,2
Author information +
文章历史 +

摘要

针对含混合储能微电网调度中忽略光伏/风电出力波动及荷电状态变化,导致并网波动超限及混合储能内能量调度效率降低等问题,提出一种计及初始荷电状态的双层跟踪调度方法。上层控制通过预测控制模型对微电网内光伏/风电出力进行优化,建立微电网跟踪调度模型。基于上层调度模型,下层控制中确定混合储能调度日的荷电状态初值,应用动态规划算法对混合储能中蓄电池、超级电容的容量进行分配,并将荷电状态变化量反馈至上层预测控制模型,优化并网功率交互。以并网功率波动最小与混合储能系统的荷电状态偏差最小为目标对系统进行仿真实验。实验分析结果表明:采用的控制策略具有并网抑制功能,实现了良好的跟踪调度,兼顾了混合储能内不同储能元件的充放电特性,实现混合储能内功率协调配置。

Abstract

Numerous problems exist in operating a microgrid with a hybrid energy storage system (HESS). These include excessive grid-connected power fluctuations and low dispatch efficiency. These issues are induced by ignoring the fluctuations in photovoltaic/wind power output and the dynamic changes in the state of charge of the hybrid energy storage. To address these issues, this study proposed a two-layer microgrid control method taking into account the initial state of charge of the HESS. Specifically, the photovoltaic/wind power output in the microgrid was optimized in the upper layer with the predictive control model, and the microgrid trace dispatch model was established. The initial state of charge on the HESS dispatch day was determined based on the dispatch model in the upper layer, and the capacities of the storage battery and the super-capacitor in the HESS were distributed with the dynamic planning algorithm. Moreover, the change in the state of charge was fed back to the predictive control model in the upper layer for optimizing the grid-connected power interaction. Next, the simulation was performed on the system focusing on minimizing both grid-connected power fluctuations and the state-of-charge deviation of the HESS. The study shows that the proposed control strategy displays desirable grid-connected suppression performance and achieves favorable trace dispatch. The proposed strategy consideres the charge and discharge characteristics of different energy storage elements to achieve coordinated power dispatch in the HESS.

关键词

混合储能系统 / 模型预测控制 / 荷电状态 / 双层控制

Key words

hybrid energy storage system / model predictive control / state of charge / two-layer control

引用本文

导出引用
刘晓艳. 计及初始荷电状态的含混合储能微电网双层调度研究[J]. 太阳能学报. 2024, 45(2): 416-420 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0984
Liu Xiaoyan. TWO-LAYER DISPATCH OF MICROGRID WITH HYBRID ENERGY STORAGE CONSIDERING INITIAL STATE OF CHARGE[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 416-420 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0984
中图分类号: TM734   

参考文献

[1] 刘仲民, 齐国愿, 高敬更, 等. 基于自适应VMD的混合储能容量优化配置研究[J]. 太阳能学报, 2022, 43(4): 75-81.
LIU Z M, QI G Y, GAO J G, et al.Research on optimal configuration of hybrid energy storage capacity based on adaptive VMD[J]. Acta energiae solaris sinica, 2022, 43(4): 75-81.
[2] 郑子萱, 倪扶瑶, 汪颖, 等. 基于模型预测控制混合储能系统的直流微电网韧性提升策略[J]. 电力自动化设备, 2021, 41(5): 152-159.
ZHENG Z X, NI F Y, WANG Y, et al.Operation resilience enhancing strategy of DC microgrid based on model predictive controlled hybrid energy storage system[J]. Electric power automation equipment, 2021, 41(5): 152-159.
[3] 李蕊睿, 李奇, 蒲雨辰, 等. 计及功率交互约束的含电-氢混合储能的多微电网系统容量优化配置[J]. 电力系统保护与控制, 2022, 50(14): 53-64.
LI R R, LI Q, PU Y C, et al.Optimal configuration of an electric-hydrogen hybrid energy storage multi-microgrid system considering power interaction constraints[J]. Power system protection and control, 2022, 50(14): 53-64.
[4] 李翔宇, 赵冬梅. 市场机制下多微电网多时间尺度优化调度研究[J]. 电机与控制学报, 2020, 24(7): 29-38.
LI X Y, ZHAO D M.Multi-time scale optimal scheduling strategy of multi-microgrid based on market mechanism[J]. Electric machines and control, 2020, 24(7): 29-38.
[5] 朱云杰, 秦文萍, 于浩, 等. 基于神经网络的微电网参与上层电网实时优化调度策略[J]. 电力建设, 2020, 41(10): 9-19.
ZHU Y J, QIN W P, YU H, et al.Strategy based on neural network for microgrid participating in real-time optimal scheduling of upper grid[J]. Electric power construction, 2020, 41(10): 9-19.
[6] 吴岩, 王玮, 吴学智, 等. 微电网跟踪调度计划双层双时间尺度实时控制策略[J]. 电力自动化设备, 2021, 41(1): 120-134.
WU Y, WANG W, WU X Z, et al.Two-layer double-time scale real-time control strategy of microgrid for tracking scheduling plan[J]. Electric power automation equipment, 2021, 41(1): 120-134.
[7] 朱晓荣, 候顺达, 李铮. 基于模型预测控制的直流微电网电压动态响应优化[J]. 电网技术, 2020, 44(6): 2187-2195.
ZHU X R, HOU S D, LI Z.Voltage dynamic response optimization of DC microgrid based on model predictive control[J]. Power system technology, 2020, 44(6): 2187-2195.
[8] 孙泽伦, 陈洁, 闫亚岭, 等. 基于混合储能平抑风电波动的双堆自循环协调控制[J]. 太阳能学报, 2021, 42(4): 125-132.
SUN Z L, CHEN J, YAN Y L, et al.Coordination control of double reactors self-circulation based on hybrid energy storage for wind power fluctuation suppression[J]. Acta energiae solaris sinica, 2021, 42(4): 125-132.
[9] 郑新昊, 祝龙记. 光伏直流微电网超级电容储能控制策略研究[J]. 可再生能源, 2020, 38(4): 497-501.
ZHENG X H, ZHU L J.Research on control strategy of super capacitor energy storage in photovoltaic DC microgrid[J]. Renewable energy resources, 2020, 38(4): 497-501.
[10] 孟建辉, 彭嘉琳, 王毅, 等. 考虑储能荷电状态及频率恢复特性的改进型灵活虚拟惯性控制[J]. 电力自动化设备, 2020, 40(6): 100-107, 108, 114.
MENG J H, PENG J L, WANG Y, et al. Improved flexible virtual inertial control considering SOC of energy storage and characteristics of frequency recovery[J]. Electric power automation equipment, 2020, 40(6): 100-107, 108, 114.
[11] 郑健, 杨耕, 耿华. 微电网储能系统调度日SOC初值确定方法[J]. 电源学报, 2022, 20(3): 144-151.
ZHENG J, YANG G, GENG H.Daily initial SOC determination method in scheduling of energy storage system in microgrid[J]. Journal of power supply, 2022, 20(3): 144-151.
[12] 朱永强, 王甜婧, 许阔, 等. 基于动态规划-遗传算法的混合储能系统实时协调调度和经济运行[J]. 太阳能学报, 2019, 40(4): 1059-1066.
ZHU Y Q, WANG T J, XU K, et al.Real-time coordinated dispatching and economic operation of hybrid energy storage based on dynamic programming-genetic algorithm[J]. Acta energiae solaris sinica, 2019, 40(4): 1059-1066.

基金

江苏省“青蓝工程”; 校科研基金(JSEIY2021003)

PDF(1550 KB)

Accesses

Citation

Detail

段落导航
相关文章

/