考虑应急电源车的综合能源系统融冰与抢修调度策略

曾华荣, 翟勇, 杨旗, 马覃峰, 古庭赟, 董雪情

太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 259-265.

PDF(1065 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1065 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 259-265. DOI: 10.19912/j.0254-0096.tynxb.2023-0990

考虑应急电源车的综合能源系统融冰与抢修调度策略

  • 曾华荣1,2, 翟勇3, 杨旗1,2, 马覃峰1, 古庭赟1, 董雪情3,4
作者信息 +

INTEGRATED ENERGY SYSTEM ICE MELTING AND REPAIR SCHEDULING STRATEGY CONSIDERING EMERGENCY POWER VEHICLES

  • Zeng Huarong1,2, Zhai Yong3, Yang Qi1,2, Ma Qinfeng1, Gu Tingyun1, Dong Xueqing3,4
Author information +
文章历史 +

摘要

针对含高比例可再生能源的综合能源系统遇到冰灾等灾害时由于除冰抢修导致失负荷量较大的问题,提出考虑应急电源车的综合能源系统融冰与抢修调度策略。首先,根据气象数据分析输电线路覆冰增长过程物理特性,从雨凇、雾凇覆冰角度建立覆冰增长计算表达式。其次,上层优化利用抢修小队在电网冰灾时为电网快速恢复供电,下层优化模型利用综合能源系统与应急电源车进行优化,采用抹香鲸算法对模型进行求解。采用IEEE 33节点系统进行仿真,算例结果表明基于该文方法可提高综合能源系统优化调度的效率,并保证电网的安全稳定运行。

Abstract

Aiming at the problem of large load loss caused by ice disaster and other disasters in the integrated energy system with high proportion of renewable energy due to de-icing and emergency repair, an integrated energy system de-icing and emergency repair scheduling strategy considering emergency power supply vehicles is proposed. Firstly, according to the meteorological data, the physical characteristics of the icing growth process of transmission lines are analyzed, and the calculation expression of icing growth is established from the perspective of rime and rime icing. Secondly, the upper level optimization is to use the emergency repair team to quickly restore the power supply for the power grid during the ice disaster. The lower level optimization model is optimized for the integrated energy system and the emergency power supply vehicle, and the model is solved by the sperm whale algorithm. The IEEE 33 node is used to simulate the ice melting decision. The results show that the method based on this paper can improve the efficiency of the optimal scheduling of the integrated energy system and ensure the safe and stable operation of the power grid.

关键词

应急电源车 / 融冰优化 / 覆冰 / 综合能源 / 快速恢复供电

Key words

emergency power supply vehicle / ice melting optimization / icing / integrated energy / fast recovery of power supply

引用本文

导出引用
曾华荣, 翟勇, 杨旗, 马覃峰, 古庭赟, 董雪情. 考虑应急电源车的综合能源系统融冰与抢修调度策略[J]. 太阳能学报. 2024, 45(10): 259-265 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0990
Zeng Huarong, Zhai Yong, Yang Qi, Ma Qinfeng, Gu Tingyun, Dong Xueqing. INTEGRATED ENERGY SYSTEM ICE MELTING AND REPAIR SCHEDULING STRATEGY CONSIDERING EMERGENCY POWER VEHICLES[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 259-265 https://doi.org/10.19912/j.0254-0096.tynxb.2023-0990
中图分类号: TK73   

参考文献

[1] 蒋维, 李亚冬, 李海波, 等. 水平轴风力机桨叶覆冰数值模拟[J]. 太阳能学报, 2014, 35(1): 83-88.
JIANG W, LI Y D, LI H B, et al.Simulation of icing on horizontal-axis wind turbine blade[J]. Acta energiae solaris sinica, 2014, 35(1): 83-88.
[2] 熊玮, 徐浩, 徐林享, 等. 计及时间累积效应的RF-APJA-MKRVM输电线路覆冰组合预测模型[J]. 高电压技术, 2022, 48(3): 948-957.
XIONG W, XU H, XU L X, et al.Combined model of icing prediction of transmission lines based on RF-APJA-MKRVM considering time cumulative effect[J]. High voltage engineering, 2022, 48(3): 948-957.
[3] 马富齐, 王波, 董旭柱, 等. 面向输电线路覆冰厚度辨识的多感受野视觉边缘智能识别方法研究[J]. 电网技术, 2021, 45(6): 2161-2169.
MA F Q, WANG B, DONG X Z, et al.Receptive field vision edge intelligent recognition for ice thickness identification of transmission line[J]. Power system technology, 2021, 45(6): 2161-2169.
[4] 蒋兴良, 张志劲, 胡琴, 等. 再次面临电网冰雪灾害的反思与思考[J]. 高电压技术, 2018, 44(2): 463-469.
JIANG X L, ZHANG Z J, HU Q, et al.Thinkings on the restrike of ice and snow disaster to the power grid[J]. High voltage engineering, 2018, 44(2): 463-469.
[5] 孙亮, 孙健, 张程, 等. 计及需求侧响应的微能源网日前调度及定量评估[J]. 太阳能学报, 2021, 42(9): 461-469.
SUN L, SUN J, ZHANG C, et al.Day-ahead schedule and quantitation evaluation of micro-energy network considered requirement-side response[J]. Acta energiae solaris sinica, 2021, 42(9): 461-469.
[6] BAHRAMI A, YAN M Y, SHAHIDEHPOUR M, et al.Mobile and portable de-icing devices for enhancing the distribution system resilience against ice storms: preventive strategies for damage control[J]. IEEE electrification magazine, 2021, 9(3): 120-129.
[7] WANG Y D, ZHANG G, TIAN Z B, et al.An online thermal deicing method for urban rail transit catenary[J]. IEEE transactions on transportation electrification, 2021, 7(2): 870-882.
[8] SUN P, TENG Y, CHEN Z.Robust coordinated optimization for multi-energy systems based on multiple thermal inertia numerical simulation and uncertainty analysis[J]. Applied energy, 2021, 296: 116982.
[9] 王永真, 康利改, 张靖, 等. 综合能源系统的发展历程、典型形态及未来趋势[J]. 太阳能学报, 2021, 42(8): 84-95.
WANG Y Z, KANG L G, ZHANG J, et al.Development history, typical from and future trend of integrated energy system[J]. Acta energiae solaris sinica, 2021, 42(8): 84-95.
[10] YAN M Y, SHAHIDEHPOUR M, PAASO A, et al.Distribution system resilience in ice storms by optimal routing of mobile devices on congested roads[J]. IEEE transactions on smart grid, 2021, 12(2): 1314-1328.
[11] 黄新波, 李弘博, 朱永灿, 等. 基于时间序列分析与卡尔曼滤波的输电线路覆冰短期预测[J]. 高电压技术, 2017, 43(6): 1943-1949.
HUANG X B, LI H B, ZHU Y C, et al.Short-term forecast for transmission line icing by time series analysis and Kalman filtering[J]. High voltage engineering, 2017, 43(6): 1943-1949.
[12] 潘华, 梁作放, 肖雨涵, 等. 多场景下区域综合能源系统的优化运行[J]. 太阳能学报, 2021, 42(1): 484-492.
PAN H, LIANG Z F, XIAO Y H, et al.Optimal operation of regional integrated energy system under multiple scenes[J]. Acta energiae solaris sinica, 2021, 42(1): 484-492.
[13] ROSTAMPOUR V, KEVICZKY T.Probabilistic energy management for building climate comfort in smart thermal grids with seasonal storage systems[J]. IEEE transactions on smart grid, 2019, 10(4): 3687-3697.
[14] 龚妙, 李录平, 刘瑞, 等. 风力机叶片覆冰状态监测基准值与分级诊断标准研究[J]. 太阳能学报, 2021, 42(2): 172-178.
GONG M, LI L P, LIU R, et al.Research on ice accretion conditon monitoring reference value and grading diagnosis standard of wind turbine blades[J]. Acta energiae solaris sinica, 2021, 42(2): 172-178.
[15] HUANG W, HU B, SHAHIDEHPOUR M, et al.Preventive scheduling for reducing the impact of glaze icing on transmission lines[J]. IEEE transactions on power systems, 2022, 37(2): 1297-1310.
[16] 任郡枝, 陈健, 姜心怡, 等. 考虑可移动式储能与网络重构的弹性配电网灾后恢复策略[J]. 电力建设, 2020, 41(3): 86-92.
REN J Z, CHEN J, JIANG X Y, et al.Post-disaster recovery strategy of resilient distribution network considering mobile energy storage system and network reconfiguration[J]. Electric power construction, 2020, 41(3): 86-92.
[17] 田德, 陈忠雷, 邓英. 考虑预测误差的综合能源系统优化调度模型[J]. 太阳能学报, 2019, 40(7): 1890-1896.
TIAN D, CHEN Z L, DENG Y.Integrated energy system optimal dispatching model considering prediction errors[J]. Acta energiae solaris sinica, 2019, 40(7): 1890-1896.
[18] YAN M Y, AI X M, SHAHIDEHPOUR M, et al.Enhancing the transmission grid resilience in ice storms by optimal coordination of power system schedule with pre-positioning and routing of mobile DC de-icing devices[J]. IEEE transactions on power systems, 2019, 34(4): 2663-2674.
[19] 汪露露, 吴红斌, 周亦尧. 基于供能可靠性的综合能源系统优化配置[J]. 太阳能学报, 2021, 42(12): 395-400.
WANG L L, WU H B, ZHOU Y Y.Optimal configuration of integrated energy system based on energy supply reliability[J]. Acta energiae solaris sinica, 2021, 42(12): 395-400.
[20] 滕云, 孙鹏, 张明理, 等. 基于农村新型产业结构的 “能源-环境-经济” 鲁棒优化模型[J]. 中国电机工程学报, 2022, 42(2): 614-630, 14.
TENG Y, SUN P, ZHANG M L, et al.Robust optimization model of“energy-environment-economy” based on the new rural industrial structure[J]. Proceedings of the CSEE, 2022, 42(2): 614-630, 14.
[21] 崔杨, 纪银锁, 仲悟之, 等. 基于电-热联合储能的弃风消纳调度方法[J]. 太阳能学报, 2021, 42(12): 192-199.
CUI Y, JI Y S, ZHONG W Z, et al.Dispatching method of wind power curtailment based on electric-thermal combined energy storage[J]. Acta energiae solaris sinica, 2021, 42(12): 192-199.
[22] LIU Y, FARZANEH M, DU B X.Nonlinear characteristics of leakage current for flashover monitoring of ice-covered suspension insulators[J]. IEEE transactions on dielectrics and electrical insulation, 2016, 23(3): 1242-1250.

基金

南方电网重点科技项目(066600KK52210005)

PDF(1065 KB)

Accesses

Citation

Detail

段落导航
相关文章

/