基于动态格栅的湍流风实验模拟方法研究

金瑞麒, 武广兴, 魏永刚, 张海瑞, 李新凯, 刘永前

太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 587-594.

PDF(5871 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(5871 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (8) : 587-594. DOI: 10.19912/j.0254-0096.tynxb.2023-1007

基于动态格栅的湍流风实验模拟方法研究

  • 金瑞麒1,2, 武广兴1,2, 魏永刚1,2, 张海瑞1,2, 李新凯3, 刘永前1,2
作者信息 +

RESEARCH ON EXPERIMENTAL SIMULATION METHOD OF TURBULENT WIND BASED ON ACTIVE GRID

  • Jin Ruiqi1,2, Wu Guangxing1,2, Wei Yonggang1,2, Zhang Hairui1,2, Li Xinkai3, Liu Yongqian1,2
Author information +
文章历史 +

摘要

开发一种基于动态格栅的湍流风实验模拟方法和装置,并通过调节格栅运动参数和来流风速,实现对湍流风特征参数的定量调控。实验分别研究罗斯贝数Ro、格栅雷诺数ReM、格栅运动角加速度α、格栅运动周期长度T对湍流参数的影响规律。结果表明,湍流参数仅对罗斯贝数敏感,平均风速与湍流度均随罗斯贝数增加而增大,而湍流积分尺度则呈现先减小后增大的趋势。综合实验工况参数,得到湍流强度可调节范围为0.05~0.39,湍流积分尺度可调节范围为0.15~1.56 m,适用于缩尺比1∶20~1∶1200范围的风电机组模型实验。

Abstract

An experimental simulation method and device of turbulent wind based on active grid were developed. By adjusting the wind speed and grid motion parameters, the control of turbulent wind is realized. The effects of Rossby number Ro, grid Reynolds number ReM, grid motion angular acceleration α and grid motion period length T on turbulence parameters were studied. The results show that the turbulence parameters are most sensitive to Rossby number. The average wind speed and turbulence intensity increase with the increase of Rossby number, while the turbulence integral scale decreases first and then increases. Based on the experimental parameters, the adjustable range of turbulence intensity is 5%-39%, and the adjustable range of turbulence integral scale is 0.15-1.56 m, which is suitable for wind turbine model experiments with a scale ratio of 1∶20-1∶1200.

关键词

风电 / 风洞 / 湍流 / 动态格栅 / 湍流积分尺度

Key words

wind power / wind tunnel / turbulence / active grid / turbulence integral scale

引用本文

导出引用
金瑞麒, 武广兴, 魏永刚, 张海瑞, 李新凯, 刘永前. 基于动态格栅的湍流风实验模拟方法研究[J]. 太阳能学报. 2024, 45(8): 587-594 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1007
Jin Ruiqi, Wu Guangxing, Wei Yonggang, Zhang Hairui, Li Xinkai, Liu Yongqian. RESEARCH ON EXPERIMENTAL SIMULATION METHOD OF TURBULENT WIND BASED ON ACTIVE GRID[J]. Acta Energiae Solaris Sinica. 2024, 45(8): 587-594 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1007
中图分类号: TK83   

参考文献

[1] 高晓清, 陈伯龙, 杨丽薇, 等. 大气湍流稳定度对风力机尾流影响的模拟研究[J]. 太阳能学报, 2020, 41(4): 145-152.
GAO X Q, CHEN B L, YANG L W, et al.Simulation study of impact of atmospheric turbulence stability on turbine wake[J]. Acta energiae solaris sinica, 2020, 41(4): 145-152.
[2] 杨从新, 王印, 李寿图, 等. 基于实验分析入流湍流积分尺度对水平轴风力机功率波动的影响[J]. 太阳能学报, 2021, 42(8): 408-413.
YANG C X, WANG Y, LI S T, et al.Experimental study on influence of inflow turbulence integral scale on power fuctuation of horizontal axis wind turbine[J]. Acta energiae solaris sinica, 2021, 42(8): 408-413.
[3] OWEN P R, ZIENKIEWICZ H K.The production of uniform shear flow in a wind tunnel[J]. Journal of fluid mechanics, 1957, 2(6): 521.
[4] PHILLIPS J C, THOMAS N H, PERKINS R J, et al.Wind tunnel velocity profiles generated by differentially-spaced flat plates[J]. Journal of wind engineering and industrial aerodynamics, 1999, 80(3): 253-262.
[5] 辛金超. 大气边界层的风洞被动模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
XIN J C.Passive simulation of the atmospheric boundary layer in wind tunnel[D]. Harbin: Harbin Institute of Technology, 2010.
[6] COUNIHAN J.An improved method of simulating an atmospheric boundary layer in a wind tunnel[J]. Atmospheric environment (1967), 1969, 3(2): 197-214.
[7] 陈彬, 姚裕, 易弢, 等. 基于回流多风扇主动控制引导风洞的风场模拟试验[J]. 南京航空航天大学学报, 2019, 51(3): 374-381.
CHEN B, YAO Y, YI T, et al.Wind field simulation in small-scale model of closed-circuit multiple controlled fan wind tunnel[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(3): 374-381.
[8] 庞加斌, 林志兴. 边界层风洞主动模拟装置的研制及实验研究[J]. 实验流体力学, 2008, 22(3): 80-85.
PANG J B, LIN Z X.Development and experimental study on the active simulation device in boundary layer wind tunnel[J]. Journal of experiments in fluid mechanics, 2008, 22(3): 80-85.
[9] 魏芬洋. 基于振动格栅的大气边界层风洞模拟方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
WEI F Y.Research of simulation method about homogeneous turbulence field based on oscillating-grid in wind tunnel[D]. Harbin: Harbin Institute of Technology, 2016.
[10] HIDEHARU M.Realization of a large-scale turbulence field in a small wind tunnel[J]. Fluid dynamics research, 1991, 8(1/2/3/4): 53-64.
[11] POORTE R E G, BIESHEUVEL A. Experiments on the motion of gas bubbles in turbulence generated by an active grid[J]. Journal of fluid mechanics, 2002, 461: 127-154.
[12] MYDLARSKI L.A turbulent quarter century of active grids: from Makita (1991) to the present[J]. Fluid dynamics research, 2017, 49(6): 061401.
[13] SHET C S, CHOLEMARI M R, VEERAVALLI S V.Optimizing the performance of an active grid to generate high intensity isotropic free stream turbulence[J]. Physics of fluids, 2020, 32(9): 095120-1.
[14] NEUHAUS L, HÖLLING M, BOS W J T, et al. Generation of atmospheric turbulence with unprecedentedly large Reynolds number in a wind tunnel[J]. Physical review letters, 2020, 125(15): 154503.
[15] HEARST R J, LAVOIE P.The effect of active grid initial conditions on high Reynolds number turbulence[J]. Experiments in fluids, 2015, 56(10): 185.
[16] LARSSEN J V, DEVENPORT W J.On the generation of large-scale homogeneous turbulence[J]. Experiments in fluids, 2011, 50(5): 1207-1223.
[17] FLAY R G J, STEVENSON D C. Integral length scales in strong winds below 20 m[J]. Journal of wind engineering and industrial aerodynamics, 1988, 28(1/2/3): 21-30.
[18] 张延涛, 吕柏呈, 武文华, 等. 基于现场实测的渤海风速特性研究[J]. 海洋工程, 2020, 38(1): 147-153.
ZHANG Y T, LYU B C, WU W H, et al.Wind characteristics analysis of Bohai Bay based on field measurement[J]. The ocean engineering, 2020, 38(1): 147-153.
[19] 杜宇, 武文华, 岳前进, 等. 流花4-1油田海域近海面风场特性分析[J]. 大连理工大学学报, 2015, 55(6): 568-574.
DU Y, WU W H, YUE Q J, et al.Analysis of wind characteristics near sea surface in LH4-1 oil field[J]. Journal of Dalian University of Technology, 2015, 55(6): 568-574.
[20] 张少锋, 楼文娟, 吕中宾, 等. 空旷平坦地面非平稳强风湍流特性研究[J]. 振动与冲击, 2014, 33(23): 68-73.
ZHANG S F, LOU W J, LYU Z B, et al.Nonstationary strong wind characteristics over an open flat terrain[J]. Journal of vibration and shock, 2014, 33(23): 68-73.
[21] 张志田. 丘陵地区深切峡谷风特性现场实测研究[J]. 湖南大学学报, 2019, 46(7): 114-122.
ZHANG Z T.On-the-spot measurement of wind characteristics in deep canyons in hilly areas[J]. Journal of Hunan University, 2019, 46(7): 114-122.
[22] 张鑫鑫. 基于北京中心城区实测的城市边界层风场特性研究[J]. 建筑结构学报, 2020, 1-7.
ZHANG X X.Study on wind field characteristics of urban boundary layer based on field measurements in central city of Beijing[J]. Journal of building structures, 2020, 1-7.

基金

国家重点研发计划“可再生能源技术”专项(2022YFB4201300); 国家自然科学基金(52276187); 华能集团总部科技项目(HNKJ20-H88)

PDF(5871 KB)

Accesses

Citation

Detail

段落导航
相关文章

/