建立质子交换膜燃料电池(PEMFC)的二维直流道模型,分析液滴在流道内的产生、破裂及传输全过程,探究进气速度、气体扩散层表面亲疏水性以及挡板结构参数等关键性因素对液滴传输特性的影响。仿真结果表明,提高进气速度有助于强化液滴的去除效果,但过高的气体流速会将液滴推向气体扩散层表面,造成液滴累积;亲水性较强的气体扩散层表面导致液滴严重坍塌形变,堵塞气体扩散层孔隙;液滴在疏水性气体扩散层表面流动速度相对较快,壁面附着力小,利于流道排水;增大挡板堵塞率可提高挡板下方及后方区域气体流速,提高液滴吹扫能力;挡板表面亲疏水性对流道内液滴去除效果影响较弱。
Abstract
A two-dimensional straight channel model of proton exchange membrane fuel cell (PEMFC) was established, and the whole process of droplet generation, rupture and transport in flow channel was analyzed, and the influence of critical factors such as inlet velocity, surface hydrophobicity of gas diffusion layer and baffle structure on droplet transport characteristics was investigated. The simulation results show that the increase of inlet velocity helps to improve droplet removal. However excessive gas flow velocity will push droplets to the surface of gas diffusion layer resulting in the accumulation of droplets. Also, highly hydrophilic gas diffusion layer surface will cause serious collapse and deformation of liquid droplets, blocking the pores of gas diffusion layer. On the contrary, droplets flow fast on the surface of hydrophobic gas diffusion layer, and the wall adhesion is small, which is conducive to the drainage of the flow channel. Thirdly, increasing the baffle blockage rate can increase local flow rate in the regions below and behind baffle and improve the ability of blowing droplets. Finally, the hydrophobicity of baffle surface has a weaker effect on the removal of droplets in flow channel.
关键词
质子交换膜燃料电池 /
有限元 /
接触角 /
水管理 /
流场 /
流速
Key words
proton exchange membrane fuel cells /
finite element method /
contact angle /
water mangement /
flow field /
flow velocity
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘阳, 陈奔. 车用PEMFC氢气系统建模及其排放特性研究[J]. 太阳能学报, 2023, 44(2): 260-268.
LIU Y, CHEN B.Modeling and emission characteristics study of PEMFC hydrogen system for vehicles[J]. Acta energiae solaris sinica, 2023, 44(2): 260-268.
[2] ZHANG G B, QU Z G, TAO W Q, et al.Porous flow field for next-generation proton exchange membrane fuel cells: materials, characterization, design, and challenges[J]. Chemical reviews, 2023, 123(3): 989-1039.
[3] 孙峰, 苏丹丹, 殷宇捷, 等. PEMFC翅脉流道传质及输出性能分析[J]. 太阳能学报, 2022, 43(6): 414-419.
SUN F, SU D D, YIN Y J, et al.Mass transfer and output performance analysis of wing vein flow channel in PEMFC[J]. Acta energiae solaris sinica, 2022, 43(6): 414-419.
[4] 张礼斌, 刘帅, 王忠, 等. 燃料电池新型流道对气体扩散层表面水去除的影响[J]. 机械工程学报, 2022, 58(22): 79-89.
ZHANG L B, LIU S, WANG Z, et al.Influence of novel channel in fuel cell on water removal from gas diffusion layer surface[J]. Journal of mechanical engineering, 2022, 58(22): 79-89.
[5] 刘丽娜, 张瑞元, 郭凌燚, 等. 质子交换膜燃料电池中微纳输运过程的数值研究进展[J]. 科学通报, 2022, 67(19): 2258-2276.
LIU L N, ZHANG R Y, GUO L Y, et al.Numerical investigation on the nano/microscale transport processes in proton exchange membrane fuel cells: a review[J]. Chinese science bulletin, 2022, 67(19): 2258-2276.
[6] 郑宇. PEMFC传热传质研究[D]. 济南: 山东大学, 2021.
ZHENG Y.Study on heat and mass transfer of PEMFC[D]. Ji’nan: Shandong University, 2021.
[7] ZHANG S H, XU S, DONG F. Effect of the shape parameter on droplet behavior in multiple channels of a proton-exchange membrane fuel cell[J]. Journal of energy engineering, 2023, 149(1): 4022047.1-4022047.14.
[8] WANG Y L, WANG H.Study on droplet motion behavior on a rough gas diffusion layer surface of a PEM fuel cell[J]. Energy reports, 2022, 8: 622-627.
[9] LORENZINI-GUTIERREZ D, KANDLIKAR S G, HERNANDEZ-GUERRERO A, et al.Residence time of water film and slug flow features in fuel cell gas channels and their effect on instantaneous area coverage ratio[J]. Journal of power sources, 2015, 279: 567-580.
[10] ZHENG J Y, GUO Q Y, ZHANG M F, et al.Numerical investigation of block structure parameters on liquid water removal in novel block flow channels of PEMFC[J]. International journal of green energy, 2022: 1-9.
[11] 郭显超. 质子交换膜燃料电池流道内流动模拟与结构改进[D]. 大连: 大连理工大学, 2021.
GUO X C.Flow simulation and structural improvement in the channel of proton exchange membrane fuel cell[D]. Dalian: Dalian University of Technology, 2021.
[12] ZHU X, SUI P C, DJILALI N.Dynamic behaviour of liquid water emerging from a GDL pore into a PEMFC gas flow channel[J]. Journal of power sources, 2007, 172(1): 287-295.
[13] 焦道宽, 郝冬, 王晓兵, 等. 振动对燃料电池扩散层液态水传输行为探究[J]. 汽车工程, 2023, 45(3): 402-408, 420.
JIAO D K, HAO D, WANG X B, et al.Study on the impact of vibration on water transport in the fuel cell gas diffusion layer[J]. Automotive engineering, 2023, 45(3): 402-408, 420.
[14] 刘涛. PEM燃料电池改性扩散层表面液滴动态行为数值模拟研究[D]. 天津: 天津商业大学, 2021.
LIU T.Numerical simulation study on dynamic behavior of droplets on the surface of modified diffusion layer of PEM fuel cell[D]. Tianjin: Tianjin University of Commerce, 2021.
基金
国家自然科学基金(51902081); 教育部“春晖计划”合作科研项目(202200397); 2023年河北省大学生创新创业训练项目(S202310075044); 河北大学校长基金(XZJJ202003)