基于Kriging模型的风力机翼型优化设计动性能分析

王清, 张敏, 李德顺, 李国强, 唐隆琛

太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 625-634.

PDF(2572 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2572 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 625-634. DOI: 10.19912/j.0254-0096.tynxb.2023-1014

基于Kriging模型的风力机翼型优化设计动性能分析

  • 王清1, 张敏1, 李德顺1, 李国强2, 唐隆琛1
作者信息 +

OPTIMIZED DESIGN AND AERODYNAMIC PERFORMANCE ANALYSIS OF WIND TURBINE AIRFOIL BASED ON KRIGING MODEL

  • Wang Qing1, Zhang Min1, Li Deshun1, Li Guoqiang2, Tang Longchen1
Author information +
文章历史 +

摘要

耦合高精度数值模拟方法、Kriging模型及遗传算法,建立高效、高精度数值模拟算法。以翼型的最大升阻比和最大切向力系数为目标函数,基于S809翼型开展多状态、多目标下的气动外形优化设计。结果表明,在Re=1×106、迎角为6˚和Re=5×105、迎角为8˚两种设计工况下,优化翼型的升阻比分别提升10.34%和10.75%。为验证优化翼型在风力机设计中的适用性,进一步基于优化翼型和S809翼型分别设计三叶片风轮,对比不同工况下风轮气动性能,发现在设计工况下,基于优化翼型设计的风轮叶片风能利用系数增大7.5%;偏航工况下基于优化翼型设计的风轮叶片风能利用系数增大7.54%,证明优化翼型能更好地适应非定常状态。

Abstract

Coupled with high-precision numerical simulation method, Kriging agent model and genetic algorithm, an efficient and high-precision numerical simulation algorithm is established. The maximum lift-to-drag ratio and maximum tangential force coefficient of the airfoil are used as the objective functions to optimize the aerodynamic shape of the S809 airfoil under multiple states and multiple objectives. The results show that the lift-to-drag ratios of the optimized airfoil are improved by 10.34% and 10.75% for the Re=1×106 with angle of attack of 6°, and Re=5×105 with angle of attack of 8°, respectively. In order to verify the applicability of the optimized airfoil in wind turbine design, this paper further designs a three-blade wind turbine based on the optimized airfoil and the S809 airfoil, and compares the wind turbine aerodynamic performance under different working conditions, and finds that the CP of the wind turbine blade based on the optimized airfoil design increases by 7.5% under the design condition; while CP increases by 7.54% under the yaw condition. This proves that the optimized airfoil can better adapt to the non-constant condition.

关键词

翼型 / 优化 / 风力机 / Kriging模型 / 计算流体力学

Key words

airfoil / optimization / wind turbines / Kriging model / computational fluid dynamics

引用本文

导出引用
王清, 张敏, 李德顺, 李国强, 唐隆琛. 基于Kriging模型的风力机翼型优化设计动性能分析[J]. 太阳能学报. 2024, 45(10): 625-634 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1014
Wang Qing, Zhang Min, Li Deshun, Li Guoqiang, Tang Longchen. OPTIMIZED DESIGN AND AERODYNAMIC PERFORMANCE ANALYSIS OF WIND TURBINE AIRFOIL BASED ON KRIGING MODEL[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 625-634 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1014
中图分类号: TK81   

参考文献

[1] VAN ROOIJ R P J O M, TIMMER W A. Roughness sensitivity considerations for thick rotor blade airfoils[J]. Journal of solar energy engineering, 2003, 125(4): 468-478.
[2] TANGLER J L, SOMERS D M.Status of the special-purpose airfoil families[C]//Proceedings of Wind Power, San Fransisco, USA, 1987: 229-335.
[3] TIMMER W A, VAN ROOIJ R P J O M. Summary of the delft university wind turbine dedicated airfoils[J]. Journal of solar energy engineering, 2003, 125(4): 488-496.
[4] FUGLSANG P, BAK C.Development of the Risø wind turbine airfoils[J]. Wind energy, 2004, 7(2): 145-162.
[5] FUGLSANG P, ANTONIOU I, DAHL K S.Wind tunnel tests of the FFA-W3-241, FFA-W3-301 and NACA 63-430 airfoils[R]. Denmark: Risø National Laboratory, 1998.
[6] 乔志德, 宋文萍, 高永卫. NPU-WA系列风力机翼型设计与风洞实验[J]. 空气动力学学报, 2012, 30(2): 260-265.
QIAO Z D, SONG W P, GAO Y W.Design and experiment of the NPU-WA airfoil family for wind turbines[J]. Acta aerodynamica sinica, 2012, 30(2): 260-265.
[7] 薛丁云, 杨科, 张磊, 等. 风力机专用翼型低雷诺数气动特性实验研究[J]. 太阳能学报, 2018, 39(4): 1105-1110.
XUE D Y, YANG K, ZHANG L, et al.Experimental study of aerodynamic characteristics of special airfoil of wind turbine at low Reynolds numbers[J]. Acta energiae solaris sinica, 2018, 39(4): 1105-1110.
[8] VATANDAS E. Hybridizing genetic algorithm with artificial neural network in the aerodynamic optimization of the forward swept wing[C]//Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,Materials Conference, 18th AIAA/ASME/AHS Adaptive Structures Conference. Orlando, Florida, USA, 2010: AIAA2010-2915.
[9] YUN Y, YOON M, NAKAYAMA H.Multi-objective optimization based on meta-modeling by using support vector regression[J]. Optimization and engineering, 2009, 10(2): 167-181.
[10] KRIGE D.A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1951, 52(6): 119-139.
[11] SMOLA A J, SCHÖLKOPF B. A tutorial on support vector regression[J]. Statistics and computing, 2004, 14(3): 199-222.
[12] PHIBOON T, KHANKWA K, PETCHARAT N, et al.Experiment and computation multi-fidelity multi-objective airfoil design optimization of fixed-wing UAV[J]. Journal of mechanical science and technology, 2021, 35(9): 4065-4072.
[13] 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5): 25-65.
HAN Z H, XU C Z, QIAO J L, et al.Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta aeronautica et astronautica sinica, 2020, 41(5): 25-65.
[14] 刘俊, 宋文萍, 韩忠华, 等. Kriging 模型在翼型反设计中的应用研究[J]. 空气动力学学报, 2014, 32(4): 518-526.
LIU J, SONG W P, HAN Z H, et al.Kriging-based airfoil inverse design[J]. Acta aerodynamica sinica, 2014, 32(4): 518-526.
[15] SAHUCK O.Comparison of a response surface method and artificial neural network in predicting the aerodynamic performance of a wind turbine airfoil and its optimization[J]. Applied sciences, 2020, 10(18): 6277.
[16] 黄靓, 李景银, 高远. 基于响应面法的风力机翼型气动优化设计[J]. 流体机械, 2011, 39(2): 21-24.
HUANG L, LI J Y, GAO Y.Aerodynamic optimization of wind turbine airfoils using response surface techniques[J]. Fluid machinery, 2011, 39(2): 21-24.
[17] 房代宝. 风电机组翼型气动优化设计方法研究[D]. 北京: 华北电力大学, 2020.
FANG D B.Study on aerodynamic optimization design method of wind turbine airfoil[D].Beijing: North China Electric Power University, 2020.
[18] 陈亚琼, 方跃法, 郭盛, 等. 风力机专用翼型综合优化设计方法[J]. 中国机械工程, 2015, 26(9): 1194-1199, 1200.
CHEN Y Q, FANG Y F, GUO S, et al.Design methods of comprehesive optimization of wind turbine airfoils[J]. China mechanical engineering, 2015, 26(9): 1194-1199, 1200.
[19] 周鹏展, 何振, 王琦, 等. 基于Bezier曲线和弯度函数的翼型优化设计[J]. 长沙理工大学学报(自然科学版), 2020, 17(3): 90-94.
ZHOU P Z, HE Z, WANG Q, et al.Optimization design of airfoil based on Bezier curve and bend function[J]. Journal of Changsha University of science & Technology (natural science), 2020, 17(3): 90-94.
[20] WEISS J M, SMITH W A.Preconditioning applied to variable and constant density flows[J]. AIAA journal, 1995, 33(11): 2050-2057.
[21] ROE P L.Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of computational physics, 1997, 135(2): 250-258.
[22] MENTER F R.Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA journal, 1994, 32(8): 1598-1605.
[23] 庞可超, 黄典贵. 双层翼水平轴风力机气动性能研究[J]. 太阳能学报, 2022, 43(4): 434-439.
PANG K C, HUANG D G.Investigation on aerodynamic performance of double-wing horizontal-axis wind turbine[J]. Acta energiae solaris sinica, 2022, 43(4): 434-439.
[24] JIANG R, ZHAO Z Z, LIU H, et al.Numerical study on the influence of vortex generators on wind turbine aerodynamic performance considering rotational effect[J]. Renewable energy, 2022, 18: 730-741.
[25] 关晓辉, 李占科, 宋笔锋. CST气动外形参数化方法研究[J]. 航空学报, 2012, 33(4): 625-633.
GUAN X H, LI Z K, SONG B F.A study on CST aerodynamic shape parameterization method[J]. Acta aeronautica et astronautica sinica, 2012, 33(4): 625-633.
[26] 李良. 二维广义Bernstein多项式[J]. 绍兴文理学院学报(自然科学), 2004, 24(9): 9-13.
LI L.A two-dimensional generalization of the Bernstein polynomials[J]. Journal of Shaoxing University (humanities and social sciences), 2004, 24(9): 9-13.
[27] 何东海. Kriging代理模型的序列优化及其应用[D]. 上海: 华东理工大学, 2015.
HE D H.Sequential optimization method based on Kriging surrogate model and its application[D]. Shanghai: East China University of Science and Technology, 2015.
[28] MCKAY M D, BECKMAN R J, CONOVER W J.A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21(2): 239.
[29] JONES D R, SCHONLAU M, WELCH W J.Efficient global optimization of expensive black-box functions[J]. Journal of global optimization, 1998, 13(4): 455-492.
[30] GOLDBERG D E.Genetics algorithms in search, optimization and machine learning[M]. Massachusetts, Reading: Addison-Wesley Pub. Co. 1989.
[31] 贺玲丽, 汪建文, 刘雄飞, 等. 基于Wilson法风力机叶片设计及试验研究[J]. 可再生能源, 2013, 31(2): 10-14.
HE L L, WANG J W, LIU X F, et al.The design and experimental research of wind turbine blade based on Wilson method[J]. Renewable energy resources, 2013, 31(2): 10-14.

基金

国家自然科学基金(52166014); 兰州理工大学红柳优秀青年人才支持计划(2022); 甘肃省基础研究创新群体项目(21JR7RA277); 中国空气动力研究与发展中心旋翼空气动力学重点实验室研究开放课题(RAL202201)

PDF(2572 KB)

Accesses

Citation

Detail

段落导航
相关文章

/