平单轴光伏跟踪支架-基础受荷特性与优化设计

王龙威, 李如, 豆红强, 谢森华

太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 345-353.

PDF(3336 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3336 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 345-353. DOI: 10.19912/j.0254-0096.tynxb.2023-1015

平单轴光伏跟踪支架-基础受荷特性与优化设计

  • 王龙威1, 李如1, 豆红强2, 谢森华2
作者信息 +

LOADING PERFORMANCES AND OPTIMAL DESIGN OF BRACKET-FOUNDATION OF FLAT UNIAXIAL PHOTOVOLTAIC TRACKERS

  • Wang Longwei1, Li Ru1, Dou Hongqiang2, Xie Senhua2
Author information +
文章历史 +

摘要

以高寒高海拔区某大型光伏电站中平单轴光伏支架系统为背景,依托ABAQUS有限元模拟软件,构建大跨度平单轴光伏支架-基础-面板一体化三维有限元模型,探讨极端环境下平单轴光伏跟踪系统关键构件的受荷特性与失稳变形机制,并藉此提供针对性的优化设计建议。结果表明,受极端风荷载作用,该大跨度平单轴光伏系统在最大跟踪角度下,其檩条最大应力达544.4 MPa,立柱最大位移达76.3 mm,致使局部檩条、H型钢桩存在潜在屈服破坏风险;上部结构各构件的变形与其所处位置有关,整体表现为沿主梁长轴方向呈波浪线型分布,两立柱的跨中位置同样多发生较大位移,且在光伏组件悬臂端部最为明显,其在风荷载作用下的最大变形甚至达153.2 mm。针对大跨度平单轴跟踪光伏系统中的薄弱部位,提出可增强局部构件的强度或改变局部结构特征等优化建议以增强其整体稳定性。

Abstract

Taking a large-scale photovoltaic power station in alpine and high-altitude area with flat uniaxial photovoltaic racking system as the background, relying on ABAQUS finite element simulation software, we constructed an integrated three-dimensional finite element model of large-span flat uniaxial photovoltaic bracketing-foundation-panel, explored the loading characteristics of the key components of the flat uniaxial photovoltaic tracking system and the mechanism of instability deformation in an extreme environment, and provided the targeted optimization design suggestions. The results show that, under extreme wind load, the maximum stress of purlins in this large-span PV system reaches 544.4 MPa and the maximum displacement of columns reaches 76.3 mm at the maximum tracking angle, resulting in the potential risk of yield damage of local purlins and H-type steel piles; the deformations of superstructure members are related to their locations, and the overall performance shows that they are distributed in a wavy pattern along the long axis of the main girder, the mid-span position of the two columns also has a large displacement. The maximum deformation under wind load is even 153.2 mm, which is most obvious at the cantilever end of the PV module, and it is proposed to enhance the strength of the local components or change the local structural characteristics to enhance the overall stability of the large-span flat uniaxial tracking PV system.

关键词

光伏系统 / 数值模拟 / 极端荷载 / 平单轴 / 力学特性 / 跟踪

Key words

photovoltaic system / numerical modeling / load limits / flat uniaxial / mechanical properties / trackers

引用本文

导出引用
王龙威, 李如, 豆红强, 谢森华. 平单轴光伏跟踪支架-基础受荷特性与优化设计[J]. 太阳能学报. 2024, 45(10): 345-353 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1015
Wang Longwei, Li Ru, Dou Hongqiang, Xie Senhua. LOADING PERFORMANCES AND OPTIMAL DESIGN OF BRACKET-FOUNDATION OF FLAT UNIAXIAL PHOTOVOLTAIC TRACKERS[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 345-353 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1015
中图分类号: TK513.4   

参考文献

[1] 马文勇, 孙高健, 刘小兵, 等. 太阳能光伏板风荷载分布模型试验研究[J]. 振动与冲击, 2017, 36(7): 8-13.
MA W Y, SUN G J, LIU X B, et al.Tests for wind load distribution model of solar panels[J]. Journal of vibration and shock, 2017, 36(7): 8-13.
[2] 汪俊杰. 基于支架参数自适应的单轴光伏跟踪系统算法研究[D]. 杭州: 浙江大学, 2019.
WANG J J.Research on algorithm of single-axis photovoltaic tracking system based on support parameter adaptive[D]. Hangzhou: Zhejiang University, 2019.
[3] GHOSH H R, BHOWMIK N C, HUSSAIN M.Determining seasonal optimum tilt angles, solar radiations on variously oriented, single and double axis tracking surfaces at Dhaka[J]. Renewable energy, 2010, 35(6): 1292-1297.
[4] PERPIÑAN O, LORENZO E, CASTRO M A, et al. Energy payback time of grid connected PV systems: comparison between tracking and fixed systems[J]. Progress in photovoltaics: research and applications, 2009, 17(2): 137-147.
[5] BERNARDI M, FERRALIS N, WAN J H, et al.Solar energy generation in three dimensions[J]. Energy & environmental science, 2012, 5(5): 6880-6884.
[6] 胡宝琳, 吴仁杰, 周磊, 等. 固定式光伏支架受力性能与试验研究[J]. 太阳能学报, 2022, 43(8): 116-121.
HU B L, WU R J, ZHOU L, et al.Mechanical propeties and experimental study on fixed photovoltaic bracket[J]. Acta energiae solaris sinica, 2022, 43(8): 116-121.
[7] 黄华, 张梅, 何银涛. 固定式光伏支架承载能力试验研究[J]. 太阳能学报, 2020, 41(4): 7-13.
HUANG H, ZHANG M, HE Y T.Experimental study on load-carrying capacity of fixed photovoltaic bracket[J]. Acta energiae solaris sinica, 2020, 41(4): 7-13.
[8] PFAHL A, COVENTRY J, RÖGER M, et al. Progress in heliostat development[J]. Solar energy, 2017, 152: 3-37.
[9] 窦伟, 许洪华, 李晶. 跟踪式光伏发电系统研究[J]. 太阳能学报, 2007, 28(2): 169-173.
DOU W, XU H H, LI J.Analysis of solar PV tracking system[J]. Acta energiae solaris sinica, 2007, 28(2): 169-173.
[10] 张华. 城市建筑屋顶光伏利用潜力评估研究[D]. 天津: 天津大学, 2017.
ZHANG H.Research on PV energy potential of rooftop in urban area[D]. Tianjin: Tianjin University, 2017.
[11] 刘浩晨, 国振, 王立忠, 等. 漂浮式水上光伏电站锚泊系统设计方法[J]. 太阳能学报, 2019, 40(12): 3485-3492.
LIU H C, GUO Z, WANG L Z, et al.Design method for mooring system of floating photovoltaic system[J]. Acta energiae solaris sinica, 2019, 40(12): 3485-3492.
[12] 魏单, 陈琳. “农光互补” 光伏电站设计[J]. 沈阳工程学院学报(自然科学版), 2017, 13(2): 108-112, 142.
WEI D, CHEN L.Design on agricultural photovoltaic complementation power station[J]. Journal of Shenyang Institute of Engineering (natural science), 2017, 13(2): 108-112, 142.
[13] 江富平. 光伏发电项目综合效益评价研究: 以“渔光互补型” 光伏电站为例[D]. 武汉: 湖北工业大学, 2016.
JIANG F P.The study of comprehensive benefit evaluation in photovoltaic power generation project [D]. Wuhan: Hubei University of Technology, 2016.
[14] 马文勇, 康霄汉, 张晓斌, 等. 均匀流场下平单轴光伏支架扭转气动失稳特征试验研究[J]. 振动工程学报, 2024, 37(5): 838-846.
MA W Y, KANG X H, ZHANG X B, et al.Experimental investigation on the torsional aerodynamic instability characteristics of single-axis PV trackers in smooth flow[J]. Journal of vibration engineering, 2024, 37(5): 838-846.
[15] 孙宁宁. 双主梁平单轴光伏支架系统设计[D]. 西安: 西安理工大学, 2018.
SUN N N.Design of single-axis photovoltaic support system with double main beams[D]. Xi’an: Xi’an University of Technology, 2018.
[16] 吴立晴, 邵国栋, 刘钊, 等. 强风地区平单轴光伏电站稳定性分析与优化[J]. 低温建筑技术, 2021, 43(11): 107-110.
WU L Q, SHAO G D, LIU Z, et al.Stability analysis and optimization of horizontal single axis photovoltaic power station in strong wind area[J]. Low temperature architecture technology, 2021, 43(11): 107-110.
[17] 王峰, 王佳盈, 王子健, 等. 大长宽比平单轴光伏板风荷载试验研究[J]. 湖南大学学报(自然科学版), 2023, 50(7): 130-139.
WANG F, WANG J Y, WANG Z J, et al.Experimental study on wind load of flat uniaxial photovoltaic panels with large aspect ratio[J]. Journal of Hunan University (natural sciences), 2023, 50(7): 130-139.
[18] LIN C K, DAI C Y, WU J C.Analysis of structural deformation and deformation-induced solar radiation misalignment in a tracking photovoltaic system[J]. Renewable energy, 2013, 59: 65-74.
[19] 张亮, 朱紫玲, 罗冰冰, 等. 固定式光伏支架可承受荷载有限元分析[J]. 太阳能学报, 2022, 43(9): 15-20.
ZHANG L, ZHU Z L, LUO B B, et al.Finite element analysis of allowable load of fixed photovoltaic brackets[J]. Acta energiae solaris sinica, 2022, 43(9): 15-20.
[20] GB 50009—2012, 建筑结构荷载规范[S].
GB 50009—2012, Load code for the design of building structures[S].

基金

中国电建集团华东勘测设计研究院有限公司科技项目(2023022701)

PDF(3336 KB)

Accesses

Citation

Detail

段落导航
相关文章

/