振荡水柱波浪能发电装置机电转换及控制研究进展

刘艳娇, 黄铭冶, 彭爱武

太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 699-709.

PDF(2960 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2960 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (10) : 699-709. DOI: 10.19912/j.0254-0096.tynxb.2023-1016

振荡水柱波浪能发电装置机电转换及控制研究进展

  • 刘艳娇1, 黄铭冶1,2, 彭爱武1,2
作者信息 +

RESEARCH PROGRESS ON ELECTROMECHNICAL CONVERSION AND CONTROL OF OSCILLATING WATER COLUMN WAVE ENERGY CONVERTER

  • Liu Yanjiao1, Huang Mingye1,2, Peng Aiwu1,2
Author information +
文章历史 +

摘要

在间歇、随机及波动的波浪作用下,振荡水柱波浪能发电装置的空气透平转速和扭矩长期随海况多级变化、短时随波浪波动,机电转换系统结合变工况控制策略是实现输出电能最大化和平稳化的关键之一。该文从振荡水柱式波能转换技术原理及特点出发,重点分析机电转换环节运行工况、运行要点及拓扑结构,归纳总结不同类型控制策略,探讨机电转换及控制技术现状、存在问题,并展望未来发展趋势。

Abstract

Turbine rotational speed and mechanical torque in the oscillating water column wave energy converter change with sea states and fluctuate with instantaneous waves as wave energy has intermittent, random and fluctuating characteristics. Electromechanical conversion system combined with control strategy becomes one of the keys to maximize and stabilize the output power under variable working conditions. This paper starts by describing the working principle and the features of the oscillating water column wave energy conversion technology, then focuses on analyzing the operating circumstances, key points, topology of electromechanical conversion system and control strategies. The current state and issues are discussed and the future development trend is then predicted.

关键词

海洋能 / 波浪能发电装置 / 振荡水柱 / 发电机 / 控制

Key words

ocean energy / wave energy converter / oscillating water column / generator / control

引用本文

导出引用
刘艳娇, 黄铭冶, 彭爱武. 振荡水柱波浪能发电装置机电转换及控制研究进展[J]. 太阳能学报. 2024, 45(10): 699-709 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1016
Liu Yanjiao, Huang Mingye, Peng Aiwu. RESEARCH PROGRESS ON ELECTROMECHNICAL CONVERSION AND CONTROL OF OSCILLATING WATER COLUMN WAVE ENERGY CONVERTER[J]. Acta Energiae Solaris Sinica. 2024, 45(10): 699-709 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1016
中图分类号: TM341    P743.2   

参考文献

[1] MÓRK G, BARSTOW S, KABUTH A, et al. Assessing the global wave energy potential[C]//ASME 2010 29th international Conference on ocean, Offshore And Arctic Engineering. Shanghai, China, 2010: 447-454.
[2] 王项南, 贾宁, 薛彩霞, 等. 关于我国海洋可再生能源产业化发展的思考[J]. 海洋开发与管理, 2019, 36(12): 14-18.
WANG X N, JIA N, XUE C X, et al.The industrialization development of marine renewable energy[J]. Ocean development and management, 2019, 36(12): 14-18.
[3] DE O FALCÃO A F. Wave energy utilization: a review of the technologies[J]. Renewable and sustainable energy reviews, 2010, 14(3): 899-918.
[4] SHENG W N.Wave energy conversion and hydrodynamics modelling technologies: a review[J]. Renewable and sustainable energy reviews, 2019, 109: 482-498.
[5] 路晴, 史宏达. 中国波浪能技术进展与未来趋势[J]. 海岸工程, 2022, 41(1): 1-12.
LU Q, SHI H D.Progress and future trend of wave energy technology in China[J]. Coastal engineering, 2022, 41(1): 1-12.
[6] 吴必军, 张芙铭, 龙正翔, 等. 自航气动式振荡水柱波浪能发电船技术[J]. 太阳能学报, 2022, 43(8): 458-462.
WU B J, ZHANG F M, LONG Z X, et al.Technology of self-propelled pneumatic oscillating water column wave power ship[J]. Acta energiae solaris sinica, 2022, 43(8): 458-462.
[7] 陈文创, 张永良, 俞慧峰, 等. 压水板式后弯管波浪能发电装置的试验研究[J]. 水力发电学报, 2020, 39(4): 1-9.
CHEN W C, ZHANG Y L, YU H F, et al.Experimental study on backward bent duct buoy wave energy converter with a plate[J]. Journal of hydroelectric engineering, 2020, 39(4): 1-9.
[8] NING D Z, WANG R Q, CHEN L F, et al.Experimental investigation of a land-based dual-chamber OWC wave energy converter[J]. Renewable and sustainable energy reviews, 2019, 105: 48-60.
[9] LIU Z, CUI Y, XU C L, et al.Experimental and numerical studies on an OWC axial-flow impulse turbine in reciprocating air flows[J]. Renewable and sustainable energy reviews, 2019, 113: 109272.
[10] 伍儒康, 吴必军. 基于平面叶栅模型CFD数据的Wells透平设计方法[J]. 太阳能学报, 2020, 41(4): 137-144.
WU R K, WU B J.Design method of Wells turbine based on CFD results of plane cascade model[J]. Acta energiae solaris sinica, 2020, 41(4): 137-144.
[11] 游亚戈, 李伟, 刘伟民, 等. 海洋能发电技术的发展现状与前景[J]. 电力系统自动化, 2010, 34(14): 1-12.
YOU Y G, LI W, LIU W M, et al.Development status and perspective of marine energy conversion systems[J]. Automation of electric power systems, 2010, 34(14): 1-12.
[12] 李猛. 振荡单浮体气动式波能装置的能量转换研究[D]. 北京: 中国科学院大学, 2019.
LI M.Study on energy conversion of pneumatic wave energy device with oscillating single floating body[D]. Beijing: University of Chinese Academy of Sciences, 2019.
[13] 吴必军,张芙铭,覃梓真,等. 适合航行的变体水柱系统波浪转换特性实验研究[J]. 哈尔滨工程大学学报, 2023, 44(3): 353-360.
WU B J, ZHANG F M, QIN Z Z, et al.Experimental study on efficiency of a navigable wave energy converter with the variant in water column[J]. Journal of Harbin Engineering University, 2023, 44(3): 353-360.
[14] HEATH T V.A review of oscillating water columns[J]. Philosophical transactions series a, mathematical, physical, and engineering sciences, 2012, 370(1959): 235-245.
[15] HEALH T, WHITTAKER T J T, BOAKE C B. The design, construction and operation of the LIMPET wave energy converter[C]//Proceedings of the 4th European Wave Energy Conference. Islay, Scotland, 2001: 49-55.
[16] OES-ENVIROMENTALMETADATA.Mutriku Wave Power Plant[EB/OL]. https://tethys.pnnl.gov/project-sites/mutriku-wave-power-plant.
[17] LINDROTH S, LEIJON M.Offshore wave power measurements:a review[J]. Renewable and sustainable energy reviews, 2011, 15(9): 4274-4285.
[18] DE FALCÃO A F O, HENRIQUES J C C. Oscillating-water-column wave energy converters and air turbines: a review[J]. Renewable energy, 2016, 85: 1391-1424.
[19] OFFSHORE ENERGY.OE Buoy Arrives in Hawaii[EB/OL]. https://www.offshore-energy.biz/oe-buoy-arrives-in-hawaii/.
[20] 梁贤光, 高祥帆, 蒋念东, 等. 航标灯用波力发电装置[J]. 电工技术杂志, 1988, 7(7): 9-12.
LIANG X G, GAO X F, JIANG N D, et al.Wave power generation device for beacon light[J]. Electrotechnical application, 1988, 7(7): 9-12.
[21] WU B J, LI M, WU R K, et al.BBDB wave energy conversion technology and perspective in China[J]. Ocean engineering, 2018, 169: 281-291.
[22] 刘艳娇, 彭爱武, 黄铭冶. 海洋波浪能发电装置PTO系统研究进展[J]. 太阳能学报, 2023, 44(12): 381-392.
LIU Y J, PENG A W, HUANG M Y.Research progress of PTO system for wave energy converter[J]. Acta energiae solaris sinica, 2023, 44(12): 381-392.
[23] TAKAO M, SETOGUCHI T.Air turbines for wave energy conversion[J]. International journal of rotating machinery, 2012, 2012: 717398.
[24] AMUNDARAIN M, ALBERDI M, GARRIDO A J, et al.Modeling and simulation of wave energy generation plants: output power control[J]. IEEE transactions on industrial electronics, 2011, 58(1): 105-117.
[25] ROSATI M, HENRIQUES J C C, RINGWOOD J V. Oscillating-water-column wave energy converters: a critical review of numerical modelling and control[J]. Energy conversion and management: X, 2022, 16: 100322.
[26] FINNIGAN T, AULD D.Model testing of a variable-pitch aerodynamic turbine[C]//Proceedings of the Thirteenth(2003)international Offshore and Polar Engineering Conference, 2003: 357-360.
[27] 梁贤光. BD4501型浮标用波力发电装置的研制[J]. 新能源, 1997(10): 1-8.
LIANG X G.Development of wave power generation device for BD4501 buoy[J]. New energy, 1997, 19(10):1-8.
[28] 伍儒康, 陈毅, 彭泽钦, 等. 振荡水柱波浪能发电装置中负载电路对其性能的影响[J]. 太阳能学报, 2022, 43(9): 410-415.
WU R K, CHEN Y, PENG Z Q, et al.Influence of circuit on power generation performance of wave energy power generation device using oscillating water column technology[J]. Acta energiae solaris sinica, 2022, 43(9): 410-415.
[29] MARIA-ARENAS A, GARRIDO A J, RUSU E, et al.Control strategies applied to wave energy converters: state of the art[J]. Energies, 2019, 12(16): 3115.
[30] 李显豪, 张亚群, 范朝晖. 振荡水柱波浪能装置空气透平研究综述[J]. 新能源进展, 2023, 11(2): 174-180.
LI X H, ZHANG Y Q, FAN Z H.An overview of air turbines for oscillating water column wave energy converters[J]. Advances in new and renewable energy, 2023, 11(2): 174-180.
[31] 张松, 刘富铀, 张滨, 等. 我国近海波浪能资源调查与评估[J]. 海洋技术, 2012, 31(3): 79-81, 85.
ZHANG S, LIU F Y, ZHANG B, et al.Investigation and assessment of wave energy in coastal area of China[J]. Ocean technology, 2012, 31(3): 79-81, 85.
[32] HODGES J, HENDERSON J, RUEDY L, et al.An international evaluation and guidance framework for ocean energy technology[R]. IEA-OES, 2021.
[33] IRENA. Innovation outlook: Ocean energy technologies[R]. Abu Dhabi: International Renewable Energy Agency, 2020.
[34] O’SULLIVAN D L, LEWIS A W. Generator selection and comparative performance in offshore oscillating water column ocean wave energy converters[J]. IEEE transactions on energy conversion, 2011, 26(2): 603-614.
[35] COSTELLO R, TEILLANT B, WEBER J, et al.Techno-economic optimisation for wave energy converters[C]//Proceedings of the 4th(2012) International Conference on Ocean Energy. Dublin, Ireland, 2012: 1-5.
[36] SKOV JENSEN M V R. Long-term high resolution wear studies of high current density electrical brushes[C]//Proceedings of the 51th(2005) IEEE Holm Conference on Electrical Contacts. Chicago, IL, USA, 2005: 304-311.
[37] YOU Y G, ZHENG Y H, MA Y J, et al.Structural design and protective methods for the 100 kW shoreline wave power station[J]. China ocean engineering, 2003, 17(3): 438-447.
[38] 张亚群, 盛松伟, 游亚戈, 等. 波浪能发电技术应用发展现状及方向[J]. 新能源进展, 2019, 7(4): 374-378.
ZHANG Y Q, SHENG S W, YOU Y G, et al.Development status and application direction of wave energy generation technology[J]. Advances in new and renewable energy, 2019, 7(4): 374-378.
[39] ALBERDI M, AMUNDARAIN M, GARRIDO A J, et al.Complementary control of oscillating water column-based wave energy conversion plants to improve the instantaneous power output[J]. IEEE transactions on energy conversion, 2011, 26(4): 1021-1032.
[40] MCMAHON R A, ROBERTS P C, WANG X, et al.Performance of BDFM as generator and motor[J]. IEE proceedings - electric power applications, 2006, 153(2): 289.
[41] ALCORN R, O’SULLIVAN D. Electrical design for ocean wave and tidal energy systems[M]. London: The Institution of Engineering and Technology, 2019.
[42] CEBALLOS S, REA J, ROBLES E, et al.Control strategies for combining local energy storage with wells turbine oscillating water column devices[J]. Renewable energy, 2015, 83: 1097-1109.
[43] 李军军, 吴政球, 谭勋琼, 等. 风力发电及其技术发展综述[J]. 电力建设, 2011, 32(8): 64-72.
LI J J, WU Z Q, TAN X Q, et al.Review of wind power generation and relative technology development[J]. Electric power construction, 2011, 32(8): 64-72.
[44] WANG L G, ISBERG J, TEDESCHI E.Review of control strategies for wave energy conversion systems and their validation: the wave-to-wire approach[J]. Renewable and sustainable energy reviews, 2018, 81: 366-379.
[45] DE FALCÃO A F O, HENRIQUES J C C. Effect of non-ideal power take-off efficiency on performance of single- and two-body reactively controlled wave energy converters[J]. Journal of ocean engineering and marine energy, 2015, 1(3): 273-286.
[46] GATO L M C, DE O FALCÃO A F. Aerodynamics of the Wells turbine: control by swinging rotor-blades[J]. International journal of mechanical sciences, 1989, 31(6): 425-434.
[47] JEFFERYS R, WHITTAKER T.Latching control of an oscillating water column device with air compressibility[M]//Hydrodynamics of Ocean Wave-Energy Utilization. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986: 281-291.
[48] BABARIT A, GUGLIELMI M, CLÉMENT A H. Declutching control of a wave energy converter[J]. Ocean engineering, 2009, 36(12/13): 1015-1024.
[49] 邱孟, 杨俊华, 林汇金, 等. 先进控制技术在波浪发电系统中的应用[J]. 电机与控制应用, 2021, 48(2): 13-21.
QIU M, YANG J H, LIN H J, et al.Application of modern control technology in wave energy conversion system[J]. Electric machines & control application, 2021, 48(2): 13-21.
[50] DE O FALCÃO A F, VIEIRA L C, JUSTINO P A P, et al. By-pass air-valve control of an OWC wave power plant[J]. Journal of offshore mechanics and Arctic engineering, 2003, 125(3): 205-210.
[51] M’ZOUGHI F, BOUALLEGUE S, GARRIDO A J, et al. Stalling-free control strategies for oscillating-water-column-based wave power generation plants[J]. IEEE transactions on energy conversion, 2018, 33(1): 209-222.
[52] M'ZOUGHI F, GARRIDO I, BOUALLÈGUE S, et al. Intelligent airflow controls for a stalling-free operation of an oscillating water column-based wave power generation plant[J]. Electronics, 2019, 8(1): 70.
[53] CARRELHAS A A D, GATO L M C, HENRIQUES J C C, et al. Peak shaving control in OWC wave energy converters: from concept to implementation in the Mutriku wave power plant[J]. Renewable and sustainable energy reviews, 2023, 180: 113299.
[54] DE O FALCÃO A F, JUSTINO P A P. OWC wave energy devices with air flow control[J]. Ocean engineering, 1999, 26(12): 1275-1295.
[55] STRATI F M, MALARA G, ARENA F.Performance optimization of a U-Oscillating-Water-Column wave energy harvester[J]. Renewable energy, 2016, 99: 1019-1028.
[56] O'SULLIVAN D, GRIFFITHS J, EGAN M G, et al. Development of an electrical power take off system for a sea-test scaled offshore wave energy device[J]. Renewable energy, 2011, 36(4): 1236-1244.
[57] GAEBELE D T, MAGANA M E, BREKKEN T K A, et al. Second order sliding mode control of oscillating water column wave energy converters for power improvement[J]. IEEE transactions on sustainable energy, 2021, 12(2): 1151-1160.
[58] ARBI J, GHORBAL M J B, SLAMA-BELKHODJA I, et al. Direct virtual torque control for doubly fed induction generator grid connection[J]. IEEE transactions on industrial electronics, 2009, 56(10): 4163-4173.
[59] M’ZOUGHI F, BOUALLEGUE S, AYADI M, et al. Harmony search algorithm-based airflow control of an oscillating water column-based wave generation power plants[C]//2018 International Conference on Advanced Systems and Electric Technologies (IC_ASET). Hammamet, Tunisia, 2018: 249-254.
[60] GARRIDO A J, GARRIDO I, AMUNDARAIN M, et al.Sliding-mode control of wave power generation plants[J]. IEEE transactions on industry applications, 2012, 48(6): 2372-2381.
[61] M’ZOUGHI F, GARRIDO I, GARRIDO A J, et al. Self-adaptive global-best harmony search algorithm-based airflow control of a Wells-turbine-based oscillating-water column[J]. Applied sciences, 2020, 10(13): 4628.
[62] M’ZOUGHI F, GARRIDO I, GARRIDO A J, et al. Fuzzy gain scheduled-sliding mode rotational speed control of an oscillating water column[J]. IEEE access, 2020, 8: 45853-45873.
[63] GATO L M C, WEBSTER M. An experimental investigation into the effect of rotor blade sweep on the performance of the variable-pitch Wells turbine[J]. Proceedings of the institution of mechanical engineers, part A: journal of power and energy, 2001, 215(5): 611-622.
[64] SAID H A, RINGWOOD V.Grid integration aspects of wave energy—overview and perspectives[J]. IET renewable power generation, 2021, 15(14): 3045-3064.
[65] TSILI M, PAPATHANASSIOU S.A review of grid code technical requirements for wind farms[J]. IET renewable power generation, 2009, 3(3): 308-332.
[66] RAJAPAKSE G, JAYASINGHE S, FLEMING A, et al.A model predictive control-based power converter system for oscillating water column wave energy converters[J]. Energies, 2017, 10(10): 1631.
[67] EVANS A, STREZOV V, EVANS T J.Assessment of utility energy storage options for increased renewable energy penetration[J]. Renewable and sustainable energy reviews, 2012, 16(6): 4141-4147.
[68] MURRAY D B, EGAN M G, HAYES J G, et al.Applications of supercapacitor energy storage for a wave energy converter system[C]// 8th(2009) European Wave and Tidal Energy Conference, Uppsala, Sweden, 2009: 786-795.
[69] RAJAPAKSE G, JAYASINGHE S, FLEMING A, et al.Grid integration and power smoothing of an oscillating water column wave energy converter[J]. Energies, 2018, 11(7): 1871.

基金

国家自然科学基金联合基金项目(U20A20106); 国家海洋可再生能源专项资金项目(GHME2018SF02)

PDF(2960 KB)

Accesses

Citation

Detail

段落导航
相关文章

/