为实现高比例可再生能源的“非电利用”,对集中供热系统引入可再生能源站(由电锅炉和电动空气源热泵构成),提高系统对波动性可再生能源的利用率及经济性。在集中供热系统中针对新增可再生能源站配置数量、接入位置及装机容量分配方案建立同步优化模型,该模型分为内、外两个优化模块,内部优化一级网循环泵的总功耗成本以及供热系统对波动性可再生能源的利用率,外部优化全生命周期的经济收益净现值,在项目全生命周期内以内、外两个模块的综合最优为目标,利用遗传算法实现高效全局优化。通过案例分析表明,在供热系统中新增能源站之后,通过该同步优化模型,整个集中供热系统的水力工况得到优化,管网全部热力站用户的平均资用压差减小,消耗在输配管网和热力站调节阀上的功耗显著降低,并带来可观的节能经济收益。
Abstract
In order to achieve a high proportion of non-electric utilization of renewable energy, we introduced renewable energy stations (consisting of electric boilers and electric air source heat pumps) into the district heating system to enhance the utilization rate and economic efficiency of fluctuating renewable energy. To address the integration of the newly added renewable energy stations in the district heating system, we established a synchronized optimization model for configuring the quantity, connection points, and installed capacity. The model comprises two optimization modules: the internal module optimizes the total power consumption cost of the primary network circulation pump and the utilization of fluctuating renewable energy in the heating system, while the external module optimizes the net present value of economic benefits throughout the project's lifecycle. The comprehensive optimization of both internal and external modules is the primary objective, and genetic algorithms are employed to achieve efficient global optimization. The case study results demonstrate that after adding energy stations to the heating system, the synchronized optimization model optimizes the hydraulic conditions of the entire district heating system, reduces the average pressure difference among all heating station users in the network, significantly decreases energy consumption in the distribution network and heating station control valves, and results in substantial energy-saving economic benefits.
关键词
可再生能源 /
成本效益分析 /
优化 /
区域供热 /
容量分配 /
全生命周期效益
Key words
renewable energy /
cost benefit analysis /
optimization /
district heating /
capacity allocation /
whole life cycle benefit
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 林冬. 浅谈我国可再生能源发展现状及对策研究[J]. 中国工程咨询, 2022(3): 16-20.
LIN D.On the development status and countermeasures of renewable energy in China[J]. China engineering consultants, 2022(3): 16-20.
[2] 黄震, 谢晓敏. 碳中和愿景下的能源变革[J]. 中国科学院院刊, 2021, 36(9): 1010-1018.
HUANG Z, XIE X M.Energy revolution under vision of carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(9): 1010-1018.
[3] WANG J X, ZHONG H W, QIN J J, et al.Incentive mechanism for sharing distributed energy resources[J]. Journal of modern power systems and clean energy, 2019, 7(4): 837-850.
[4] JODEIRI A M, GOLDSWORTHY M J, BUFFA S, et al.Role of sustainable heat sources in transition towards fourth generation district heating: review[J]. Renewable and sustainable energy reviews, 2022, 158: 112156.
[5] 赵军, 李扬, 李浩, 等. 中低温能源在中国[J]. 太阳能学报, 2022, 43(2): 250-260.
ZHAO J, LI Y, LI H, et al.Mid-/ low-temperature energy in China[J]. Acta energiae solaris sinica, 2022, 43(2): 250-260.
[6] ZHANG Y C, JOHANSSON P, SASIC KALAGASIDIS A.Assessment of district heating and cooling systems transition with respect to future changes in demand profiles and renewable energy supplies[J]. Energy conversion and management, 2022, 268: 116038.
[7] 孟政吉, 陈铄鑫, 胡雪凯, 等. 多区域分布式能源站选址及供能管线布局规划研究[J]. 河北电力技术, 2022, 41(1): 23-27.
MENG Z J, CHEN S X, HU X K, et al.Research on location selection and pipeline layout planning of multi regional distributed energy stations[J]. Hebei electric power, 2022, 41(1): 23-27.
[8] 王珊珊, 刘青荣, 阮应君, 等. 基于聚类选址的区域能源系统站网布局优化规划[J]. 科学技术与工程, 2021, 21(15): 6305-6311.
WANG S S, LIU Q R, RUAN Y J, et al.Optimal planning of station network layout of district energy system based on clustered site selection[J]. Science technology and engineering, 2021, 21(15): 6305-6311.
[9] 杨锡运, 张洋, 谢志佳, 等. 基于风电-蓄热式电锅炉联合供暖的风电消纳多目标双层优化调度[J]. 太阳能学报, 2020, 41(1): 273-281.
YANG X Y, ZHANG Y, XIE Z J, et al.Multi-objective bi-level optimization operation of wind power accommodation for heat storage electric boiler combined with wind power[J]. Acta energiae solaris sinica, 2020, 41(1): 273-281.
[10] 刘艳峰, 万静, 陈耀文, 等. 分布式太阳能集中供暖系统用户与集中蓄热装置容量匹配优化设计[J]. 太阳能学报, 2022, 43(9): 184-192.
LIU Y F, WAN J, CHEN Y W, et al.Optimal design of capacity matching between users and central heat storage device in distributed solar central heating system[J]. Acta energiae solaris sinica, 2022, 43(9): 184-192.
[11] 付祥钊, 肖益民. 流体输配管网[M]. 4版. 北京: 中国建筑工业出版社, 2018.
FU X Z, XIAO Y M.Fluid network for transportation and distribution[M]. 4th ed. Beijing: China Architecture & Building Press, 2018.
[12] 王兆强, 刘青荣, 阮应君, 等. 区域能源规划中站网布置优化设计方法研究与应用[J]. 热能动力工程, 2019, 34(8): 25-30.
WANG Z Q, LIU Q R, RUAN Y J, et al.Research and application of optimal layout method for station network layout in regional energy planning[J]. Journal of engineering for thermal energy and power, 2019, 34(8): 25-30.
[13] 陈娟. 能源互联网背景下的区域分布式能源系统规划研究[D]. 北京: 华北电力大学, 2017.
CHEN J.Research on planning of regional distributed energy system under energy internet[D]. Beijing: North China Electric Power University, 2017.
[14] 郭巧莉, 陶娅, 岳旭东. 资金时间价值在工程活动中的运用分析[C]//中国会计学会财务成本分会第25届理论研讨会论文集. 南京, 中国, 2012: 593-597.
GUO Q L, TAO Y, YUE X D.Analysis of the application of capital time value in engineering activities[C]// The 25th Theoretical Seminar of Financial Cost Branch of Accounting Association of China. Nanjing, China, 2012 :593-597.
[15] 曹慧哲, 贺志宏, 朱蒙生, 等. 基于图论的多定压节点管网水力计算方法的研究[J]. 给水排水, 2008, 34(1): 105-108.
CAO H Z, HE Z H, ZHU M S, et al.Research on hydraulic computation of the multi-fixed head nodes network based on graph theory[J]. Water & wastewater engineering, 2008, 34(1): 105-108.
[16] 刘萍, 俞焕. 一种改进的自适应遗传算法[J]. 舰船电子工程, 2021, 41(6): 101-104.
LIU P, YU H.An improved adaptive genetic algorithm[J]. Ship electronic engineering, 2021, 41(6): 101-104.
[17] 易文飞, 俞永增, 张艺伟, 等. 基于p-中位模型的区域综合能源系统能源站优化规划[J]. 电力系统自动化, 2019, 43(4): 107-112.
YI W F, YU Y Z, ZHANG Y W, et al.P-median model based optimal planning of energy station for regional integrated energy systems[J]. Automation of electric power systems, 2019, 43(4): 107-112.
[18] WANG J D, ZHOU Z G, ZHAO J N.A method for the steady-state thermal simulation of district heating systems and model parameters calibration[J]. Energy conversion and management, 2016, 120: 294-305.
基金
河北省高等学校科学技术研究项目(QN2021042); 河北省自然科学基金(E2024202065); 国家自然科学基金(52208104)