波浪激励下内置式波浪能发电装置的能量转换机理尚不清晰,影响了能量输出效率和稳定性。基于势流理论、莫里森方程和拉格朗日-欧拉方程,建立内置偏心摆式波浪能发电装置的三自由度动力学模型,并通过对比理论计算数据与水池试验数据,验证了模型的有效性。基于所建立的动力学模型,分析波浪激励条件、阻尼系数、偏心摆质量及偏心摆安装高度对装置运动响应的影响,并进一步研究能量转换过程的混沌效应,明晰装置混沌状态与输出功率之间的关系,揭示能量转换机理。
Abstract
The energy conversion mechanisms of the inner eccentric pendulum wave energy converter under wave excitation is still unclear, thereby impacting the converter's output efficiency and stability. Utilizing the principles of potential flow theory, the Morrison equation, and the Lagrange-Euler equation, this study establishes a three-degree-of-freedom dynamic model for the inner eccentric pendulum wave energy converter. The validity of the model is verified by comparing the theoretical calculation data with the experimental data of the pool. Based on the established dynamic model, the effects of wave excitation condition, damping coefficient, mass of eccentric pendulum and installation height of eccentric pendulum on the motion response of the device are analyzed. Additionally, a comprehensive analysis is performed to explore the chaotic behavior in the energy conversion process. This research clarifies the relationship between the chaotic state of the device and the output power, and reveals the energy conversion mechanism.
关键词
波浪能 /
混沌理论 /
能量转换 /
数值模拟 /
内置偏心摆 /
参数分析
Key words
wave power /
chaos theory /
energy conversion /
numerical simulation /
inner eccentric pendulum /
parametric analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 彭伟, 王芳, 王冀. 我国海洋可再生能源开发利用现状及发展建议[J]. 海洋经济, 2022, 12(3): 70-75.
PENG W, WANG F, WANG J.Status and development suggestion for the development and utilization of ocean energy in China[J]. Marine economy, 2022, 12(3): 70-75.
[2] HOU J C, ZHU X W, LIU P K.Current situation and future projection of marine renewable energy in China[J]. International journal of energy research, 2019, 43(2): 662-680.
[3] 王春晓, 于华明, 李松霖, 等. 基于海浪再分析数据的波浪能资源分析[J]. 太阳能学报, 2022, 43(9): 430-436.
WANG C X, YU H M, LI S L, et al.Wave energy resource valuation based on sea wave reanalysis data[J]. Acta energiae solaris sinica, 2022, 43(9): 430-436.
[4] CLEMENT A, MCCULLEN P, FALCAO A, et al.Wave energy in Europe: current status and perspectives[J]. Renewable and sustainable energy reviews, 2002, 6(5) : 405-431.
[5] 郑明月. 振荡浮子式波浪能发电技术研究[D]. 广州: 华南理工大学, 2017.
ZHENG M Y.Study on the Technology of Wave Power Generation by Oscillating Float[D]. Guangzhou: South China University of Technology, 2017.
[6] WU B J, LI M, WU R K, et al.BBDB wave energy conversion technology and perspective in China[J]. Ocean engineering, 2018, 169: 281-291.
[7] BEELS C, TROCH P, DE VISCH K, et al.Application of the time-dependent mild-slope equations for the simulation of wake effects in the lee of a farm of Wave Dragon wave energy converters[J]. Renewable energy, 2010, 35(8): 1644-1661.
[8] BOREN B C, BATTEN B A, PAASCH R K.Active control of a vertical axis pendulum wave energy converter[C]//Proceedings of the American Control Conference. Portland, USA, 2014: 1033-1038.
[9] 叶寅, 游亚戈,王文胜,等. 鸭式波浪能装置能量转换系统力学模型优化[J]. 太阳能学报, 2020, 41(10) : 15-19.
YE Y, YOU Y G, WANG W S, et al.Mechanical model optimization of Duck wave energy converter power take-off system[J]. Acta energiae solaris sinica, 2020, 41(10): 15-19.
[10] CAI Q L, ZHU S Y.Applying double-mass pendulum oscillator with tunable ultra-low frequency in wave energy converters[J]. Applied energy, 2021, 298: 117228.
[11] SHI G, TONG D K, XIA Y S, et al.A piezoelectric vibration energy harvester for multi-directional and ultra-low frequency waves with magnetic coupling driven by rotating balls[J]. Applied energy, 2022, 310: 118511.
[12] 王棣. 内置耦合摆式波浪能压电发电装置研究[D]. 舟山: 浙江海洋大学, 2021.
WANG D.Study on Characteristics of Built-in Coupled Pendulum Piezoelectric Wave Energy Converter[D]. Zhoushan: Zhejiang Ocean University, 2021.
[13] DING W J, WANG K Y, MAO Z Y, et al.Layout optimization of an inertial energy harvester for miniature underwater mooring platforms[J]. Marine structures, 2020, 69: 102681.
[14] 薛钢, 刘延俊, 薛祎凡, 等. 内置偏心转子式波浪能发电装置的动力学研究[J]. 天津大学学报(自然科学与工程技术版) , 2022, 55(2): 191-198.
XUE G, LIU Y J, XUE Y F, et al.Dynamic Study of the Wave Energy Converter with Inner Eccentric Rotor[J]. Journal of Tianjin University (science and technology) , 2022, 55(2): 191-198.
[15] Ratanak S, Bret B, Kelley R, et al.Modeling of a Wave Energy Oscillating Water Column as a Point Absorber Using WEC-Sim[J]. IEEE transactions on sustainable energy, 2020, 11(2): 851-858.
[16] BRETL J G.A time domain model for wave induced motions coupled to energy extraction[D]. Michigan: University of Michigan, 2009.
[17] 张增宝. 振荡浮子式波浪能发电系统捕能功率预测与多目标优化[D]. 济南: 山东大学, 2020.
ZHANG Z B.Prediction and Multi-objective Optimization of Power Capture for Oscillating-body Wave Energy Converter[D]. Jinan: Shandong University, 2020.
[18] WU J M, QIAN C, ZHENG S M, et al.Investigation on the wave energy converter that reacts against an internal inverted pendulum[J]. Energy, 2022, 247: 123493.
[19] 胡裴龙. 基于混沌理论与DNA编码的图像加密算法研究[D]. 合肥: 安徽大学, 2018.
HU P L.Research on Image Encryption Algorithm Based on Chaos Theory and DNA Encoding[D]. Hefei: Anhui University, 2018.
[20] Teodorescu H.Characterization of nonlinear dynamic systems for engineering purposes-a partial review[J] . International Journal of General Systems,2012,41(8): 805-825.
[21] 陶慧, 赵世彬, 贾春华. 准PR调节下单相光伏并网逆变器的非线性研究[J]. 太阳能学报, 2022, 43(10): 21-28.
TAO H, ZHAO S B, JIA C H.Nonlinear research of single-phase photovoltaic grid-connected inverter with quasi PR controller[J]. Acta energiae solaris sinica, 2022, 43(10): 21-28.
基金
国家自然科学基金面上项目(52171265); 国家自然科学基金联合基金项目(U22A20242); 国家自然科学基金基础科学中心项目(42188102)