不同模型倾角的极小曲面复合相变材料熔化特性分析

刘亮亮, 张晓凯, 孙明瑞, 赵佳飞, 吴迪, 张俊

太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 612-618.

PDF(2725 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2725 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 612-618. DOI: 10.19912/j.0254-0096.tynxb.2023-1033

不同模型倾角的极小曲面复合相变材料熔化特性分析

  • 刘亮亮1, 张晓凯2, 孙明瑞2, 赵佳飞2, 吴迪2, 张俊2
作者信息 +

MELTING CHARACTERISTICS ANALYSIS OF TRIPLY PERIODIC MINIMAL SURFACE COMPOSITE PHASE CHANGE MATERIALS WITH DIFFERENT MODEL INCLINATION ANGLES

  • Liu Liangliang1, Zhang Xiaokai2, Sun Mingrui2, Zhao Jiafei2, Wu Di2, Zhang Jun2
Author information +
文章历史 +

摘要

以基于片状Diamond和杆状Diamond结构的复合相变储热单元(TPMS-PCM)为研究对象,建立4个模型,分别为不同模型倾角(0˚、30˚、60˚、90˚)。通过数值模拟的方法,研究模型倾角对相变储能单元储能性能的影响规律。研究结果表明:基于片状Diamond的相变储能单元自然对流较弱,因此其受模型倾角影响较小;在杆状Diamond中,60°模型融化速度比0°模型提高5.9%。

Abstract

The composite phase change heat storage unit (TPMS-PCM) based on sheet Diamond and rod-Diamond structure was studied, and four models were established for different installation angles (0˚, 30˚, 60˚, 90˚). The influence of model inclination Angle on the energy storage performance of phase-change energy storage unit is studied by numerical simulation. The results show that the natural convection of the phase change energy storage unit based on the chip Diamond is weak, so it is less affected by the installation Angle. In the rod-shaped Diamond, the melting speed of the 60° model is 5.9% higher than that of the 0° model.

关键词

蓄热 / 数值方法 / 相变材料 / 模型倾角 / 三周期极小曲面

Key words

heat storage / numerical methods / phase change materials / model inclination / triply periodic minimal surfaces

引用本文

导出引用
刘亮亮, 张晓凯, 孙明瑞, 赵佳飞, 吴迪, 张俊. 不同模型倾角的极小曲面复合相变材料熔化特性分析[J]. 太阳能学报. 2024, 45(11): 612-618 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1033
Liu Liangliang, Zhang Xiaokai, Sun Mingrui, Zhao Jiafei, Wu Di, Zhang Jun. MELTING CHARACTERISTICS ANALYSIS OF TRIPLY PERIODIC MINIMAL SURFACE COMPOSITE PHASE CHANGE MATERIALS WITH DIFFERENT MODEL INCLINATION ANGLES[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 612-618 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1033
中图分类号: TK124   

参考文献

[1] 滕佳伦, 李宏仲. 碳中和背景下综合智慧能源的发展现状及关键技术分析[J]. 综合智慧能源, 2023, 45(8): 53-63.
TENG J L, LI H Z.Analysis on development and key technologies of integrated intelligent energy in the context of carbon neutrality[J]. Integrated intelligent energy, 2023, 45(8): 53-63.
[2] 张建平, 胡慧瑶, 吴淑英, 等. 正交各向异性相变材料的无网格法传热模型及应用[J]. 太阳能学报, 2022, 43(3): 242-250.
ZHANG J P, HU H Y, WU S Y, et al.Meshless heat transfer analysis model of orthotropic phase change materials and its application[J]. Acta energiae solaris sinica, 2022, 43(3): 242-250.
[3] DOBRI A, TSIANTIS A, PAPATHANASIOU T D, et al.Investigation of transient heat transfer in multi-scale PCM composites using a semi-analytical model[J]. International journal of heat and mass transfer, 2021, 175: 121389.
[4] LAOUER A, ARıCı M, TEGGAR M, et al. Effect of magnetic field and nanoparticle concentration on melting of Cu-ice in a rectangular cavity under fluctuating temperatures[J]. Journal of energy storage, 2021, 36: 102421.
[5] CHENG P, CHEN X, GAO H Y, et al.Different dimensional nanoadditives for thermal conductivity enhancement of phase change materials: Fundamentals and applications[J]. Nano energy, 2021, 85: 105948.
[6] LI C, LI Q, GE R H.Enhancement of melting performance in a shell and tube thermal energy storage device under different structures and materials[J]. Applied thermal engineering, 2022, 214: 118701.
[7] 于静梅, 刘耀鸿, 张凤忠, 等. 翅片强化相变储能蓄热性能的数值研究[J]. 太阳能学报, 2023, 44(6): 78-83.
YU J M, LIU Y H, ZHANG F Z, et al.Numerical study of heat storage performance in phase change energy storage enhanced by fins[J]. Acta energiae solaris sinica, 2023, 44(6): 78-83.
[8] 韩涛, 马彦花, 方嘉宾, 等. 管壳式太阳能相变储热器传热特性的数值研究[J]. 太阳能学报, 2023, 44(3): 525-532.
HAN T, MA Y H, FANG J B, et al.Numerical simulation study of heat transfer characteristics on solar tube-and-shell phase change heat storage unit[J]. Acta energiae solaris sinica, 2023, 44(3): 525-532.
[9] LI W Q, QU Z G, HE Y L, et al.Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin[J]. Applied thermal engineering, 2012, 37: 1-9.
[10] CHEN Z Q, GAO D Y, SHI J.Experimental and numerical study on melting of phase change materials in metal foams at pore scale[J]. International journal of heat and mass transfer, 2014, 72: 646-655.
[11] XIAO X, JIA H W, PERVAIZ S, et al.Molten salt/metal foam/graphene nanoparticle phase change composites for thermal energy storage[J]. ACS applied nano materials, 2020, 3(6): 5240-5251.
[12] EANEST JEBASINGH B, VALAN ARASU A.A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications[J]. Energy storage materials, 2020, 24: 52-74.
[13] EBRAHIMI A, HOSSEINI M J, RANJBAR A A, et al.Melting process investigation of phase change materials in a shell and tube heat exchanger enhanced with heat pipe[J]. Renewable energy, 2019, 138: 378-394.
[14] CHOPRA K, PATHAK A K, TYAGI V V, et al.Thermal performance of phase change material integrated heat pipe evacuated tube solar collector system: an experimental assessment[J]. Energy conversion and management, 2020, 203: 112205.
[15] 赵兰, 王国珍. 相变蓄热复合传热强化技术综述[J]. 储能科学与技术, 2022, 11(11): 3534-3547.
ZHAO L, WANG G Z.Research progress on composite heat transfer enhancement technology of phase change heat storage system[J]. Energy storage science and technology, 2022, 11(11): 3534-3547.
[16] HAN L, CHE S N.An overview of materials with triply periodic minimal surfaces and related geometry: from biological structures to self-assembled systems[J]. Advanced materials, 2018, 30(17): e1705708.
[17] FENG J W, FU J Z, YAO X H, et al.Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications[J]. International journal of extreme manufacturing, 2022, 4(2): 022001.
[18] LIU X L, WANG H L, XU Q, et al.High thermal conductivity and high energy density compatible latent heat thermal energy storage enabled by porous AlN ceramics composites[J]. International journal of heat and mass transfer, 2021, 175: 121405.
[19] SHEN H, JI A H, LI Q, et al.Tensile mechanical properties and finite element simulation of the wings of the butterfly Tirumala limniace[J]. Journal of comparative physiology A, neuroethology, sensory, neural, and behavioral physiology, 2023, 209(2): 239-251.
[20] AL-KETAN O, ROWSHAN R, ABU AL-RUB R K. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials[J]. Additive manufacturing, 2018, 19: 167-183.
[21] BABY R, BALAJI C.Experimental investigations on thermal performance enhancement and effect of orientation on porous matrix filled PCM based heat sink[J]. International communications in heat and mass transfer, 2013, 46: 27-30.
[22] LI H Y, HU C Z, HE Y C, et al.Influence of model inclination on the melting behavior of graded metal foam composite phase change material: a pore-scale study[J]. Journal of energy storage, 2021, 44: 103537.
[23] LI H Y, HU C Z, HE Y C, et al.Pore-scale study on Rayleigh-Bénard convection formed in the melting process of metal foam composite phase change material[J]. International journal of thermal sciences, 2022, 177: 107572.

基金

国家自然科学基金(52176002)

PDF(2725 KB)

Accesses

Citation

Detail

段落导航
相关文章

/