基于南海海域的深海温差能利用开发效益分析

吴红华, 杨欣, 李正农, 匡荛

太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 536-544.

PDF(2075 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2075 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 536-544. DOI: 10.19912/j.0254-0096.tynxb.2023-1034

基于南海海域的深海温差能利用开发效益分析

  • 吴红华1, 杨欣1, 李正农1, 匡荛2
作者信息 +

BENEFIT ANALYSIS OF DEEP-SEA TEMPERATURE DIFFERENCE ENERGY UTILIZATION BASED ON SOUTH CHINA SEA

  • Wu Honghua1, Yang Xin1, Li Zhengnong1, Kuang Rao2
Author information +
文章历史 +

摘要

利用Fluent软件对柔性立管中冷海水泵送时的传热过程进行模拟,确定不同材料管道对冷海水出口温度的影响,同等条件下玻璃纤维增强复合材料管(FRP)的冷海水温度比钢管低近3 K,并基于此分析海洋温差能发电系统的经济效益。以FRP管和钢管作为海水立管,FRP管对应系统的平准化度电成本比钢管低23.78%;利用光伏光热一体化(PVT)系统将温海水温度提高5~20 K,结果发现温度越高,平准化度电成本越低,FRP管对应成本下降25.44%,钢管对应成本下降29.48%,钢管系统的优化效果更明显;分析扩大装机功率对系统的成本优化效果,并将提高热源温度与扩大装机功率两种优化方式结合,确定最优组合系统的平准化度电成本相对原始配置降低近50%。

Abstract

The heat transfer process of cold seawater pumping in the flexible riser was simulated by using Fluent software to determine the influence of different materials on the outlet temperature of cold seawater, and the cold seawater temperature of FRP pipe was nearly 3K lower than that of steel pipe under the same conditions, and the economic benefits of ocean temperature difference energy power generation system were analyzed. With FRP pipe and steel pipe as seawater riser, the levelized LCOE of the corresponding system of FRP pipe is 23.78% lower than that of steel pipe. The PVT system was used to increase the temperature of warm seawater by 5-20 K, and the results showed that the higher the temperature, the lower the levelized LCOE, the corresponding cost of FRP pipe decreased by 25.44%, and the corresponding cost of steel pipe decreased by 29.48%, and the optimization effect of steel pipe system was more obvious. The effect of expanding the installed power on the cost optimization of the system was analyzed, and the two optimization methods of increasing the heat source temperature and expanding the installed power were combined to determine that the levelized LCOE of the optimal combined system was reduced by nearly 50% compared with the original configuration.

关键词

海洋温差能发电 / 保温 / 经济分析 / 平准化度电成本 / 成本优化

Key words

ocean thermal energy conversion / insulation / economic analysis / levelized cost of energy / cost optimization

引用本文

导出引用
吴红华, 杨欣, 李正农, 匡荛. 基于南海海域的深海温差能利用开发效益分析[J]. 太阳能学报. 2024, 45(11): 536-544 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1034
Wu Honghua, Yang Xin, Li Zhengnong, Kuang Rao. BENEFIT ANALYSIS OF DEEP-SEA TEMPERATURE DIFFERENCE ENERGY UTILIZATION BASED ON SOUTH CHINA SEA[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 536-544 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1034
中图分类号: P743.4   

参考文献

[1] 王锰, 赵英汝, 张浩然, 等. 基于粒子群算法的海洋温差能朗肯循环系统多目标优化[J]. 太阳能学报, 2019, 40(10): 2716-2724.
WANG M, ZHAO Y R, ZHANG H R, et al.Multi-objective optimization of otec Rankine cycle based on pso algorithm[J]. Acta energiae solaris sinica, 2019, 40(10): 2716-2724.
[2] YANG M H, YEH R H.Investigation of the potential of R717 blends as working fluids in the organic Rankine cycle(ORC) for ocean thermal energy conversion(OTEC)[J]. Energy, 2022, 245: 123317.
[3] RAJAGOPALAN K, NIHOUS G C.Estimates of global ocean thermal energy conversion(OTEC) resources using an ocean general circulation model[J]. Renewable energy, 2013, 50: 532-540.
[4] CHANDRASEKAR M, SENTHILKUMAR T.Five decades of evolution of solar photovoltaic thermal(PVT) technology-a critical insight on review articles[J]. Journal of cleaner production, 2021, 322: 128997.
[5] MENON G S, MURALI S, ELIAS J, et al.Experimental investigations on unglazed photovoltaic-thermal(PVT) system using water and nanofluid cooling medium[J]. Renewable energy, 2022, 188: 986-996.
[6] CHEN F L, YIN H M.Fabrication and laboratory-based performance testing of a building-integrated photovoltaic-thermal roofing panel[J]. Applied energy, 2016, 177: 271-284.
[7] PEI G, FU H D, ZHANG T, et al.A numerical and experimental study on a heat pipe PV/T system[J]. Solar energy, 2011, 85(5): 911-921.
[8] PEI G, FU H D, ZHU H J, et al.Performance study and parametric analysis of a novel heat pipe PV/T system[J]. Energy, 2012, 37(1): 384-395.
[9] 潘俊, 张东胜, 李鹏, 等. 深海玻纤增强柔性管截面结构设计及强度分析[J]. 玻璃钢/复合材料, 2018(2): 21-27.
PAN J, ZHANG D S, LI P, et al.Cross section structure design and strength analysis of glass fiber reinforced flexible pipe in deep sea[J]. Fiber reinforced plastics/composites, 2018(2): 21-27.
[10] MILLER A, ASCARI M B.OTEC advanced composite cold water pipe: final technical report[R]. United States: Final Technical Report, 2011
[11] ADIPUTRA R, UTSUNOMIYA T.Stability based approach to design cold-water pipe(CWP) for ocean thermal energy conversion(OTEC)[J]. Applied ocean research, 2019, 92: 101921.
[12] YANG H Z, JIANG H, YANG Q.Enhanced multi-layer fatigue-analysis approach for unbonded flexible risers[J]. China ocean engineering, 2014, 28(3): 363-379.
[13] MAO L J, WEI C J, ZENG S, et al.Heat transfer mechanism of cold-water pipe in ocean thermal energy conversion system[J]. Energy, 2023, 269: 126857.
[14] 朱柯宇, 卞永宁, 刘杨. 基于上原循环中间抽气的OTEC性能和热经济性分析[J]. 太阳能学报, 2023, 44(12): 393-400.
ZHU K Y, BIAN Y N, LIU Y.OTEC performance and thermal economy analysis based on intermediate extraction of uehara cycle[J]. Acta energiae solaris sinica, 2023, 44(12): 393-400.
[15] 王博, 杨童赟, 张宇彤, 等. 不同温差发电循环流程系统的热经济分析[J]. 太阳能学报, 2023, 44(2): 22-29.
WANG B, YANG T Y, ZHANG Y T, et al.Thermal economic analysis of thermoelectric generation system with different cycle flow[J]. Acta energiae solaris sinica, 2023, 44(2): 22-29.
[16] BERNARDONI C, BINOTTI M, GIOSTRI A.Techno-economic analysis of closed OTEC cycles for power generation[J]. Renewable energy, 2019, 132: 1018-1033.
[17] MARTEL L, SMITH P, RIZEA S, et al.Ocean thermal energy conversion life cycle cost assessment, final technical report, 30 may 2012[R]. United States: Final Technical Report, 2012
[18] 国家发展改革委. 国家发展改革委、住房城乡建设部关于调整部分行业建设项目财务基准收益率的通知[EB/OL]. https://www.ndrc.gov.cn, 2013-03-15.
National Development and Reform Commission. Notice of the National Development and Reform Commission and the ministry of housing and urban-rural development on adjusting the financial benchmark rate of return of construction projects in some industries[EB/OL]. https://www.ndrc.gov.cn, 2013-03-15.
[19] 严孙鸿, 周春艳, 朱峰, 等. 永兴岛温差能评估及电站选址分析[J]. 太阳能学报, 2023, 44(12): 401-409.
YAN S H, ZHOU C Y, ZHU F, et al.Evaluation of ocean thermal energy conversion(OTEC)and site selection analysis of power station in Yongxing Island, South China Sea[J]. Acta energiae solaris sinica, 2023, 44(12): 401-409.
[20] LIMA TORRES A L F, GONZALEZ E C, DE SIQUEIRA M Q, et al. Lazy-wave steel rigid risers for turret-moored FPSO[C]//ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo, Norway, 2009: 203-209.
[21] 余杨, 吴凡蕾, 余建星, 等. 缓波形立管的复合构型响应分析[J]. 天津大学学报(自然科学与工程技术版), 2022, 55(1): 90-100.
YU Y, WU F L, YU J X, et al.Response analysis of compound configuration of LwSCR[J]. Journal of Tianjin University(science and technology), 2022, 55(1): 90-100.
[22] 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019.
TAO W Q.Heat transfer[M]. 5th ed. Beijing: Higher Education Press, 2019.
[23] MA Q F, GAO Z Z, HUANG J, et al.Thermodynamic analysis and turbine design of a 100 kW OTEC-ORC with binary non-azeotropic working fluid[J]. Energy, 2023, 263: 126097.
[24] JANNIS L, CARLOS I F, JACO Q.Is bigger always better? Designing economically feasible ocean thermal energy conversion systems using spatiotemporal resource data[J]. Applied energy, 2022, 309: 118414.
[25] 海南省发展和改革委员会. 海南省发展和改革委员会关于转发《国家发展改革委关于进一步深化燃煤发电上网电价市场化改革的通知》的通知[EB/OL]. https://www.plan.hainan.gov.cn, 2021-10-22.
Hainan Provincial Development and Reform Commission. Notice of Hainan Provincial Development and Reform Commission on forwarding the notice of the National Development and Reform Commission on further deepening the reform of market-based electricity prices for coal-fired power generation[EB/OL]. https://www.plan.hainan.gov.cn, 2021-10-22.

基金

海南省科技专项资金(ZDYF2020207)

PDF(2075 KB)

Accesses

Citation

Detail

段落导航
相关文章

/