等离子喷涂制备NiCu电极及其析氢性能

王俊如, 刘太楷, 毛杰, 邓春明, 宋琛, 王寅霄

太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 700-708.

PDF(5315 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(5315 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 700-708. DOI: 10.19912/j.0254-0096.tynxb.2023-1035

等离子喷涂制备NiCu电极及其析氢性能

  • 王俊如1,2, 刘太楷1, 毛杰1, 邓春明1, 宋琛1, 王寅霄2
作者信息 +

PREPARATION OF NiCu ELECTRODE BY PLASMA SPRAYING AND ITS HYDROGEN EVOLUTION PERFORMANCE

  • Wang Junru1,2, Liu Taikai1, Mao Jie1, Deng Chunming1, Song Chen1, Wang Yinxiao2
Author information +
文章历史 +

摘要

针对电解水析氢电极材料活性低、稳定性差等问题,开展高稳定性催化材料研究。通过NiCu含量的调整,构筑类Pt电子结构,实现析氢电极材料活性和稳定性提升。采用大气等离子喷涂将不同比例的NiCu混合粉末沉积在Ni基体上,制备可控测试的电极样品,通过电化学测试和物性表征探究Cu含量对Ni电极析氢性能的影响。结果表明:Cu含量的变化显著影响电极样品析氢活性,在30% KOH溶液中,当Cu含量为65%时,驱动电流密度为100 mA/cm2的析氢反应的过电位最低,为400 mV,与纯镍相比,过电位降低了20%以上。且循环2000圈后,电极的催化性能无明显变化,NiCu合金电极在碱性条件下具有优异的稳定性。

Abstract

Aiming at the problems of low activity and poor stability of electrode materials for electrolytic water hydrogen evolution, research on high stability catalytic materials was carried out. By adjusting the content of NiCu, the Pt-like electronic structure is constructed, and the activity and stability of hydrogen evolution electrode materials are improved. Different proportions of mixed powder of NiCu were deposited on Ni substrate by atmospheric plasma spraying, and controllable electrode samples were prepared. The influence of Cu content on hydrogen evolution performance of Ni electrode was explored by electrochemical test and physical property characterization. The results show that the change of Cu content significantly affects the hydrogen evolution activity of electrode samples. When the Cu content is 65% in 30% KOH solution, the overpotential of the hydrogen evolution reaction with the driving current density of 100 mA/cm2 is the lowest, which is 400 mV, which is lower than that of pure nickel by more than 20%. After 2000 cycles, the catalytic performance of the electrode has no obvious change, and the NiCu alloy electrode has excellent stability under alkaline conditions.

关键词

氢能 / 催化剂 / 析氢反应 / 过渡金属 / 大气等离子喷涂

Key words

catalyst / hydrogen evolution reaction / transition metals / atmospheric plasma spraying

引用本文

导出引用
王俊如, 刘太楷, 毛杰, 邓春明, 宋琛, 王寅霄. 等离子喷涂制备NiCu电极及其析氢性能[J]. 太阳能学报. 2024, 45(11): 700-708 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1035
Wang Junru, Liu Taikai, Mao Jie, Deng Chunming, Song Chen, Wang Yinxiao. PREPARATION OF NiCu ELECTRODE BY PLASMA SPRAYING AND ITS HYDROGEN EVOLUTION PERFORMANCE[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 700-708 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1035
中图分类号: TQ151.1   

参考文献

[1] ANWAR S, KHAN F, ZHANG Y H, et al.Recent development in electrocatalysts for hydrogen production through water electrolysis[J]. International journal of hydrogen energy, 2021, 46(63): 32284-32317.
[2] 刘宪伟, 薛俊海, 朱威, 等. 非铂燃料电池催化剂研究进展[J]. 太阳能学报, 2022, 43(6): 286-294.
LIU X W, XUE J H, ZHU W, et al.Progress on platinum-free fuel cell catalysts[J]. Acta energiae solaris sinica, 2022, 43(6): 286-294.
[3] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520.
LI L R, PENG J, FU B, et al.Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta energiae solaris sinica, 2022, 43(6): 508-520.
[4] YU H M, SHAO Z G, HOU M, et al.Hydrogen production by water electrolysis: progress and suggestions[J]. Chinese journal of engineering science, 2021, 23(2): 146.
[5] 张一民, 康建立, 赵乃勤. 过渡金属基电解水催化剂的发展现状及展望[J]. 综合智慧能源, 2022, 44(5): 15-29.
ZHANG Y M, KANG J L, ZHAO N Q.Development and perspectives of the transition metal-based catalysts for water splitting[J]. Integrated intelligent energy, 2022, 44(5): 15-29.
[6] LI Y J, ZHOU L, GUO S J.Noble metal-free electrocatalytic materials for water splitting in alkaline electrolyte[J]. EnergyChem, 2021, 3(2): 100053.
[7] YU W T, POROSOFF M D, CHEN J G.Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts[J]. Chemical reviews, 2012, 112(11): 5780-5817.
[8] 田臻, 康建光, 孙梅娟, 等. 过渡金属双功能催化剂在碱性条件下电解水[J]. 工业催化, 2022, 30(8): 11-18.
TIAN Z, KANG J G, SUN M J, et al.Water electrolysis on transition metal bifunctional catalysts under alkaline conditions[J]. Industrial catalysis, 2022, 30(8): 11-18.
[9] YANG Z X, ZHANG Y Q, FENG C Q, et al.P doped NiCoZn LDH growth on nickel foam as an highly efficient bifunctional electrocatalyst for overall urea-water electrolysis[J]. International journal of hydrogen energy, 2021, 46(50): 25321-25331.
[10] 秦睿, 王鹏彦, 林灿, 等. 过渡金属氮化物的活性起源、合成方法及电催化应用[J]. 物理化学学报, 2021, 37(7): 47-65.
QIN R, WANG P Y, LIN C, et al.Transition metal nitrides: activity origin, synthesis and electrocatalytic applications[J]. Acta physico-chimica sinica, 2021, 37(7): 47-65.
[11] TANG H L, ZHENG S H, LUO R.Recent advances in the electrocatalytic application of transition metal nitrides nanocrystalline[J]. Acta physico-chimica sinica, 2021, 37(7): 47-65.
[12] 宋乃建, 郭明媛, 南皓雄, 等. 过渡金属基催化剂用于氧析出反应的研究进展[J]. 储能科学与技术, 2021, 10(6): 1906-1917.
SONG N J, GUO M Y, NAN H X, et al.Recent advances in transition metal-based catalysts for oxygen evolution reaction[J]. Energy storage science and technology, 2021, 10(6): 1906-1917.
[13] 刘太楷, 邓春明, 张亚鹏. 电解水制氢发展概况之一: 碱式电解水[J]. 材料研究与应用, 2019, 13(4): 339-346.
LIU T K, DENG C M, ZHANG Y P.Development of hydrogen generation via water electrolysis Ⅰ: alkaline water electrolysis[J]. Materials research and application, 2019, 13(4): 339-346.
[14] ZHAO Y, ZHANG J, ZHANG W S, et al.Growth of Ni/Mo/Cu on carbon fiber paper: an efficient electrocatalyst for hydrogen evolution reaction[J]. International journal of hydrogen energy, 2021, 46(72): 35550-35558.
[15] WANG Y, ZHU R L, WANG Z N, et al.Cu induced formation of dendritic CoFeCu ternary alloys on Ni foam for efficient oxygen evolution reaction[J]. Journal of alloys and compounds, 2021, 880: 160523.
[16] 孙强强, 曹宝月, 周春生, 等. 镍铜合金立方体纳米晶的脉冲电沉积及电催化析氢性能[J]. 高等学校化学学报, 2020, 41(6): 1287-1296.
SUN Q Q, CAO B Y, ZHOU C S, et al.Enhancing hydrogen evolution performance of a regular cube NiCu nanocrystalline electrocatalyst fabricated by normal pluse electrodeposition[J]. Chemical journal of Chinese universities, 2020, 41(6): 1287-1296.
[17] CHIARELLO G L, SELLI E, FORNI L.Photocatalytic hydrogen production over flame spray pyrolysis-synthesised TiO2 and Au/TiO2[J]. Applied catalysis B: environmental, 2008, 84(1/2): 332-339.
[18] ZHANG J, HE L, YAO Y, et al.Catalytic effect and mechanism of NiCu solid solutions on hydrogen storage properties of MgH2[J]. Renewable energy, 2020, 154: 1229-1239.
[19] GREELEY J, JARAMILLO T F, BONDE J, et al.Computational high-throughput screening of electrocatalytic materials for hydrogen evolution[J]. Nature materials, 2006, 5(11): 909-913.
[20] HERRAIZ-CARDONA I, ORTEGA E, ANTÓN J G, et al. Assessment of the roughness factor effect and the intrinsic catalytic activity for hydrogen evolution reaction on Ni-based electrodeposits[J]. International journal of hydrogen energy, 2011, 36(16): 9428-9438.
[21] PANEK J, BUDNIOK A.Ni + Mo composite coatings for hydrogen evolution reaction[J]. Surface and interface analysis, 2008, 40(3/4): 237-241.
[22] FAID A Y, BARNETT A O, SELAND F, et al.NiCu mixed metal oxide catalyst for alkaline hydrogen evolution in anion exchange membrane water electrolysis[J]. Electrochimica acta, 2021, 371: 137837.

基金

广东省科学院“百人计划”项目(2019GDASYL-0102007);广东省科学院中法表面工程联合实验室项目(2022GDASZH-2022010203);高水平科技创新平台培育与提升项目(20220102)

PDF(5315 KB)

Accesses

Citation

Detail

段落导航
相关文章

/