为提高海上风电功率预测精度,提出一种基于数据组合分解重构和贝叶斯优化的深度学习预测模型。首先,利用改进的自适应噪声完全集合经验模态分解和麻雀搜索算法优化的变模态分解将海上风速数据和历史功率数据进行分解,降低信号波动性和单一分解不彻底对预测结果的干扰。然后,根据分量的模糊熵计算结果进行分组重构,简化模型。最后,对每个功率分量建立基于贝叶斯算法和长短期记忆神经网络的预测模型,将各分量的结果叠加得到海上风电功率预测值。经海上风电实测数据验证表明,与单一的海上风速或功率数据分解预测模型相比,所提出模型可降低原始数据的强波动性对预测结果的干扰,在单步预测和多步预测上都有更高的精度。
Abstract
To enhance prediction accuracy, this study proposes a novel deep learning model that leverages data combination decomposition and Bayesian optimization. Initially, utilizing improved complete ensemble empirical mode decomposition with adaptive noise and variable modal decomposition optimized by the sparrow search algorithm, offshore wind speed data and historical power data are subjected to composite decomposition. Subsequently, the modal components obtained from composite decomposition are reconstructed using fuzzy entropy analysis to simplify the model. Finally, Bayesian-optimized long short-term memory neural networks are employed to forecast each power component, and the results of these components are aggregated to obtain the prediction of offshore wind power generation. Experimental data from offshore wind farms indicate that the proposed method efficiently mitigates the interference resulting from significant fluctuations in the original data, resulting in higher accuracy for both single-step and multi-step predictions compared to a conventional single-model approach utilizing offshore wind speed or power data decomposition.
关键词
海上风电场 /
预测 /
模态分解 /
长短期记忆 /
模糊熵 /
贝叶斯优化
Key words
offshore wind farms /
forecasting /
mode decomposition /
long short-term memory /
fuzzy entropy /
Bayes optimization
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘吉臻, 马利飞, 王庆华, 等. 海上风电支撑我国能源转型发展的思考[J]. 中国工程科学, 2021, 23(1): 149-159.
LIU J Z, MA L F, WANG Q H, et al.Offshore wind power supports China’s energy transition[J]. Strategic study of CAE, 2021, 23(1): 149-159.
[2] 赵靓. 2022—2031年全球海上风电市场展望[J]. 风能, 2022(7): 46-51.
ZHAO L. Prospect of global offshore wind power market in2022-2031[J]. Wind energy, 2022(7): 46-51.
[3] AMBACH D, SCHMID W.A new high-dimensional time series approach for wind speed, wind direction and air pressure forecasting[J]. Energy, 2017, 135: 833-850.
[4] 戚创创, 王向文. 考虑风向和大气稳定度的海上风电功率短期预测[J]. 电网技术, 2021, 45(7): 2773-2780.
QI C C, WANG X W.Short-term prediction of offshore wind power considering wind direction and atmospheric stability[J]. Power system technology, 2021, 45(7): 2773-2780.
[5] LYDIA M, SURESH KUMAR S, IMMANUEL SELVAKUMAR A, et al.Linear and non-linear autoregressive models for short-term wind speed forecasting[J]. Energy conversion and management, 2016, 112: 115-124.
[6] 钱政, 裴岩, 曹利宵, 等. 风电功率预测方法综述[J]. 高电压技术, 2016, 42(4): 1047-1060.
QIAN Z, PEI Y, CAO L X, et al.Review of wind power forecasting method[J]. High voltage engineering, 2016, 42(4): 1047-1060.
[7] 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(14): 3758-3771.
CHI Y N, LIANG W, ZHANG Z K, et al.An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36(14): 3758-3771.
[8] 张雲钦, 程起泽, 蒋文杰, 等. 基于EMD-PCA-LSTM的光伏功率预测模型[J]. 太阳能学报, 2021, 42(9): 62-69.
ZHANG Y Q, CHENG Q Z, JIANG W J, et al.Photovoltaic power prediction model based on EMD-PCA-LSTM[J]. Acta energiae solaris sinica, 2021, 42(9): 62-69.
[9] 傅质馨, 殷贵, 朱俊澎, 等. 基于EEMD和LSTM的水电机组劣化度预测方法研究[J]. 太阳能学报, 2022, 43(2): 75-81.
FU Z X, YIN G, ZHU J P, et al.Research on forecasting method of hydropower unit deterioration based on EEMD and LSTM[J]. Acta energiae solaris sinica, 2022, 43(2): 75-81.
[10] 王维高, 魏云冰, 滕旭东. 基于VMD-SSA-LSSVM的短期风电预测[J]. 太阳能学报, 2023, 44(3): 204-211.
WANG W G, WEI Y B, TENG X D.Short-term wind power forecasting based on VMD-SSA-LSSVM[J]. Acta energiae solaris sinica, 2023, 44(3): 204-211.
[11] 向玲, 刘佳宁, 苏浩, 等. 基于CEEMDAN二次分解和LSTM的风速多步预测研究[J]. 太阳能学报, 2022, 43(8): 334-339.
XIANG L, LIU J N, SU H, et al.Research on multi-step wind speed forecast based on CEEMDAN secondary decomposition and LSTM[J]. Acta energiae solaris sinica, 2022, 43(8): 334-339.
[12] 董雪, 赵宏伟, 赵生校, 等. 基于二次分解和多目标优化的超短期海上风电功率预测[J]. 高电压技术, 2022, 48(8): 3260-3270.
DONG X, ZHAO H W, ZHAO S X, et al.Ultra-short-term offshore wind power forecasting based on secondary decomposition and multi-objective optimization[J]. High voltage engineering, 2022, 48(8): 3260-3270.
[13] COLOMINAS M A, SCHLOTTHAUER G, TORRES M E.Improved complete ensemble EMD: a suitable tool for biomedical signal processing[J]. Biomedical signal processing and control, 2014, 14: 19-29.
[14] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-544.
[15] 薛建凯. 一种新型的群智能优化技术的研究与应用:麻雀搜索算法[D]. 上海: 东华大学, 2020.
XUE J K.Research and application of a novel swarm intelligence optimization technique[D]. Shanghai: Donghua University, 2020.
[16] 张金良, 刘子毅. 基于混合模型的超短期风速区间预测[J]. 电力系统保护与控制, 2022, 50(22): 49-58.
ZHANG J L, LIU Z Y.Ultra short term wind speed interval prediction based on a hybrid model[J]. Power system protection and control, 2022, 50(22): 49-58.
[17] CHEN W T, WANG Z Z, XIE H B, et al.Characterization of surface EMG signal based on fuzzy entropy[J]. IEEE transactions on neural systems and rehabilitation engineering, 2007, 15(2): 266-272.
[18] 陈峰, 余轶, 徐敬友, 等. 基于Bayes-LSTM网络的风电出力预测方法[J]. 电力系统保护与控制, 2023, 51(6): 170-178.
CHEN F, YU Y, XU J Y, et al.Prediction method of wind power output based on a Bayes-LSTM network[J]. Power system protection and control, 2023, 51(6): 170-178.
基金
国家自然科学基金青年项目(52207091)