腿距变化下海上风电机组导管架拓扑优化设计方法

张锦华, 杜家政, 龙凯, 姚西山, 陆飞宇, 耿荣荣

太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 427-432.

PDF(3285 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3285 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 427-432. DOI: 10.19912/j.0254-0096.tynxb.2023-1055

腿距变化下海上风电机组导管架拓扑优化设计方法

  • 张锦华1, 杜家政1, 龙凯2, 姚西山2,3, 陆飞宇2, 耿荣荣2
作者信息 +

TOPOLOGY OPTIMIZATION METHOD ON JACKET STRUCTURE OF OFFSHORE WIND TURBINE BY VARYING LEG DISTANCES

  • Zhang Jinhua1, Du Jiazheng1, Long Kai2, Yao Xishan2,3, Lu Feiyu2, Geng Rongrong2
Author information +
文章历史 +

摘要

为进一步提高海上风电机组支撑结构力学性能,通过调整桩腿距离以改变设计域,提出腿距变化下的导管架拓扑优化设计方法。建立多目标归一化加权柔顺度最小优化目标模型,设置体积比和工程制造加工约束,分析拓扑优化构型变化规律。基于IEC 61400-3规范及有限元分析进行整机极限载荷计算与导管架极限工况分析。以一阶固有频率、最大位移、最大支反力为衡量指标,与NREL 5 MW机组相比,腿距变化下对应设计域的一系列拓扑优化结构在力学各方面性能上更加优越,证明所提出的拓扑优化方法在导管架设计中的可行性和优越性。

Abstract

To further improve the mechanical properties of the support structure of the offshore wind turbine, a topology optimization design method is proposed by adjusting the leg distance to change the design domain. A multi-objective normalized weighted compliance minimum optimization model is established while the volume fraction and engineering manufacturing constraints are imposed as constraints. The variations of optimized topologies are analyzed. Based on IEC 61400-3 specification and finite element analysis, the ultimate load calculation and the ultimate working condition analysis of jacket are performed. Compared with NREL 5 MW offshore wind turbine, the mechanical performance of a series of optimized topologies with various leg spacing corresponding to the adjustable design domain are superior in terms of fundamental natural frequency, maximum displacement and maximum pull-out force. By altering the design domain of leg distance, the optimization results illustrate that the proposed topology optimization approach is feasible and advantageous in jacket design.

关键词

海上风电机组 / 结构设计 / 多目标优化 / 支撑 / 体积比 / 固有频率

Key words

offshore wind turbines / structural design / multiobjective optimization / supports / volume fraction / natural frequencies

引用本文

导出引用
张锦华, 杜家政, 龙凯, 姚西山, 陆飞宇, 耿荣荣. 腿距变化下海上风电机组导管架拓扑优化设计方法[J]. 太阳能学报. 2024, 45(11): 427-432 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1055
Zhang Jinhua, Du Jiazheng, Long Kai, Yao Xishan, Lu Feiyu, Geng Rongrong. TOPOLOGY OPTIMIZATION METHOD ON JACKET STRUCTURE OF OFFSHORE WIND TURBINE BY VARYING LEG DISTANCES[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 427-432 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1055
中图分类号: TH12   

参考文献

[1] WANG X F, ZENG X W, LI J L, et al.A review on recent advancements of substructures for offshore wind turbines[J]. Energy conversion and management, 2018, 158: 103-119.
[2] WU X N, HU Y, LI Y, et al.Foundations of offshore wind turbines: a review[J]. Renewable and sustainable energy reviews, 2019, 104: 379-393.
[3] WANG L, KOLIOS A, LIU X, et al.Reliability of offshore wind turbine support structures: a state-of-the-art review[J]. Renewable and sustainable energy reviews, 2022, 161: 112250.
[4] OEST J, SANDAL K, SCHAFHIRT S, et al.On gradient-based optimization of jacket structures for offshore wind turbines[J]. Wind energy, 2018, 21(11): 953-967.
[5] SANDAL K, VERBART A, STOLPE M.Conceptual jacket design by structural optimization[J]. Wind energy, 2018, 21(12): 1423-1434.
[6] SANDAL K, LATINI C, ZANIA V, et al.Integrated optimal design of jackets and foundations[J]. Marine structures, 2018, 61: 398-418.
[7] ZHENG S Y, LI C, XIAO Y Q.Efficient optimization design method of jacket structures for offshore wind turbines[J]. Marine structures, 2023, 89: 103372.
[8] WU Y F, QIU W K, XIA L, et al.Design of an aircraft engine bracket using stress-constrained bi-directional evolutionary structural optimization method[J]. Structural and multidisciplinary optimization, 2021, 64(6): 4147-4159.
[9] ZHU J H, ZHANG W H, XIA L.Topology optimization in aircraft and aerospace structures design[J]. Archives of computational methods in engineering, 2016, 23(4): 595-622.
[10] MENG L, ZHANG W H, QUAN D L, et al.From topology optimization design to additive manufacturing: today’s success and tomorrow’s roadmap[J]. Archives of computational methods in engineering, 2020, 27(3): 805-830.
[11] BEGHINI L L, BEGHINI A, KATZ N, et al.Connecting architecture and engineering through structural topology optimization[J]. Engineering structures, 2014, 59: 716-726.
[12] LEE Y S, GONZÁLEZ J A, LEE J H, et al. Structural topology optimization of the transition piece for an offshore wind turbine with jacket foundation[J]. Renewable energy, 2016, 85: 1214-1225.
[13] WANG Z J, SUIKER A S J, HOFMEYER H, et al. Coupled aerostructural shape and topology optimization of horizontal-axis wind turbine rotor blades[J]. Energy conversion and management, 2020, 212: 112621.
[14] 李宏宇, 孙鹏文, 张兰挺, 等. 基于ICM的风力机叶片多相材料拓扑优化设计[J]. 太阳能学报, 2021, 42(12): 261-266.
LI H Y, SUN P W, ZHANG L T, et al.Topology optimization design for multiphase materials of wind turbine blade based on ICM[J]. Acta energiae solaris sinica, 2021, 42(12): 261-266.
[15] 马志坤, 孙鹏文, 张兰挺, 等. 基于DMO的风力机叶片细观纤维铺角优化设计[J]. 太阳能学报, 2022, 43(4): 440-445.
MA Z K, SUN P W, ZHANG L T, et al.Optimization design of micro ply angle for wind turbines blade based on DMO[J]. Acta energiae solaris sinica, 2022, 43(4): 440-445.
[16] 刁晓航, 孙鹏文, 马志坤, 等. 基于相变量的风力机叶片宏观拓扑优化设计[J]. 太阳能学报, 2023, 44(3): 198-203.
DIAO X H, SUN P W, MA Z K, et al.Macro topology optimization design of wind turbine blade based on phase variables[J]. Acta energiae solaris sinica, 2023, 44(3): 198-203.
[17] 陆飞宇, 张承婉, 龙凯, 等. 风电机组主轴承座抗疲劳拓扑优化设计方法[J]. 太阳能学报, 2023, 44(8): 518-523.
LU F Y, ZHANG C W, LONG K, et al.Fatigue-resistance topology optimization method on main bearing seat of wind turbine[J]. Acta energiae solaris sinica, 2023, 44(8): 518-523.
[18] TIAN X J, WANG Q Y, LIU G J, et al.Topology optimization design for offshore platform jacket structure[J]. Applied ocean research, 2019, 84: 38-50.
[19] TIAN X J, SUN X Y, LIU G J, et al.Optimization design of the jacket support structure for offshore wind turbine using topology optimization method[J]. Ocean engineering, 2022, 243: 110084.
[20] ZHANG C W, LONG K, ZHANG J H, et al.A topology optimization methodology for the offshore wind turbine jacket structure in the concept phase[J]. Ocean engineering, 2022, 266: 112974.
[21] YU Y, WEI M X, YU J X, et al.Reliability-based design method for marine structures combining topology, shape, and size optimization[J]. Ocean engineering, 2023, 286: 115490.
[22] LU F Y, LONG K, ZHANG C W, et al.A novel design of the offshore wind turbine tripod structure using topology optimization methodology[J]. Ocean engineering, 2023, 280: 114607.
[23] RONG Y, ZHAO Z L, FENG X Q, et al.Structural topology optimization with an adaptive design domain[J]. Computer methods in applied mechanics and engineering, 2022, 389: 114382.
[24] IEC 61400-3, Wind turbines-part 3: design requirements for offshore wind turbines[S].
[25] THOMAS H, ZHOU M, SCHRAMM U.Issues of commercial optimization software development[J]. Structural and multidisciplinary optimization, 2002, 23(2): 97-110.
[26] ZHOU M, SHYY, THOMAS H L. Checkerboard and minimum member size control in topology optimization[J]. Structural and multidisciplinary optimization, 2001, 21(2): 152-158.
[27] FLEURY C, BRAIBANT V.Structural optimization: a new dual method using mixed variables[J]. International journal for numerical methods in engineering, 1986, 23(3): 409-428.

基金

国家重点研发计划(2022YFB4201302);南方电网新能源联合实验室开放课题(GDXNY2024KF03);广东省基础与应用基础研究基金海上风电联合基金(2022A1515240057);华能集团海上风电与智慧能源系统科技专项(HNKJ20-H88-01)

PDF(3285 KB)

Accesses

Citation

Detail

段落导航
相关文章

/