风浪流联合发电装置涡激振动数值模拟研究

王家正, 孙洪源, 林海花, 焦波, 刘德鑫, 孙光

太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 545-552.

PDF(2767 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2767 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 545-552. DOI: 10.19912/j.0254-0096.tynxb.2023-1061

风浪流联合发电装置涡激振动数值模拟研究

  • 王家正1, 孙洪源1, 林海花1, 焦波1, 刘德鑫1, 孙光2
作者信息 +

NUMERICAL STUDY ON VORTEX-INDUCED VIBRATIONS OF COMBINED WIND,WAVE, AND TIDAL POWER GENERATION DEVICE

  • Wang Jiazheng1, Sun Hongyuan1, Lin Haihua1, Jiao Bo1, Liu Dexin1, Sun Guang1
Author information +
文章历史 +

摘要

使用Fluent模拟风浪流联合发电装置的水动力特性。利用UDF和动网格技术实现圆柱振子的流固耦合模拟,分析圆柱振子的涡激振动特性。首先,从受力、运动频率、幅值、轨迹、升阻力系数等5个方面分析风浪流联合发电装置圆柱振子的涡激振动特性;其次,通过对圆柱绕流、强迫运动、单向涡激振动、双向涡激振动等多种运动形态的对比,研究风浪流联合发电装置圆柱振子的涡泄模式。最后通过与J&W的经典实验对比,证明该模拟的准确性。研究表明:单向涡激振动时,振子阻力系数的平均值和均方差均呈先增加后减少的趋势,且在约化速度为5.53~9.51时发生锁定现象;与圆柱振子绕流相比,单向涡激振动的频率比随约化速度的增加而增大,且在锁定区间保持稳定,约为1;来流速度选取锁定区间内流速时,单向或双向涡激振动的尾涡形式由2S模式转变为SS模式。

Abstract

This paper employs Fluent to simulate the hydrodynamic characteristics of the Wind, Wave, and Tidal Power Generation Device. The fluid-structure interaction simulation of a circular cylinder oscillator is achieved through the use of User-Defined Functions (UDFs) and dynamic mesh technology for analyzing the characteristics of vortex-induced vibration(VIV) of the circular cylinder oscillator. The VIV characteristics of the circular cylinder oscillator in the Wind, Wave, and Tidal Power Generation Device are analyzed from five aspects: forces, motion frequency, amplitude, trajectory, and lift-to-drag ratio. Furthermore, by comparing various motion patterns such as cylinder flow, forced motion, unidirectional vortex-induced vibration, and bidirectional vortex-induced vibration, the vortex shedding modes of the circular cylinder oscillator in the Wind, Wave, and Tidal Power Generation Device are studied. Finally, through a comparison with the classic experiment conducted by J&W, the accuracy of the simulation is validated. The research indicates that during single-direction vortex-induced vibrations, both the average value and the standard deviation of the drag coefficient of the oscillator first increase and then decrease. Lock-in occurs in the reduced velocity range of approximately 5.53 to 9.51. Compared to the flow around a cylindrical oscillator, the frequency ratio of single-direction vortex-induced vibrations increases with the reduced velocity and remains stable at approximately 1 within the lock-in range. When the flow velocity is selected within the lock-in range, the tail vortex mode for either single-direction or bidirectional vortex-induced vibrations changes from the 2S mode to the SS mode.

关键词

海流能 / 涡激振动 / 流固耦合 / 涡泄模式 / 约化速度 / 数值模拟

Key words

ocean current energy / fluid structure interaction / vortex-induced vibration / vortex shedding mode / reduced velocity / numerical simulation

引用本文

导出引用
王家正, 孙洪源, 林海花, 焦波, 刘德鑫, 孙光. 风浪流联合发电装置涡激振动数值模拟研究[J]. 太阳能学报. 2024, 45(11): 545-552 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1061
Wang Jiazheng, Sun Hongyuan, Lin Haihua, Jiao Bo, Liu Dexin, Sun Guang. NUMERICAL STUDY ON VORTEX-INDUCED VIBRATIONS OF COMBINED WIND,WAVE, AND TIDAL POWER GENERATION DEVICE[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 545-552 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1061
中图分类号: P751   

参考文献

[1] 李磊, 张兆德, 张吉萍, 等. 考虑流固耦合的Spar型浮式风力机涡激运动特性研究[J]. 太阳能学报, 2020, 41(1): 236-241.
LI L, ZHANG Z D, ZHANG J P, et al.Study on vortex induced motion characteristics of Spar-type floating offshore wind turbine considering fluid-structure interaction[J]. Acta energiae solaris sinica, 2020, 41(1): 236-241.
[2] 孙洪源, 张举明, 单亦石, 等. 考虑阻尼比的Spar式浮式风力机基础结构涡激运动特性研究[J]. 太阳能学报, 2022, 43(1): 154-160.
SUN H Y, ZHANG J M, SHAN Y S, et al.Study on vortex induced motion characteristics of Spar-type floating base structure for offshore wind turbine under different damping ratio[J]. Acta energiae solaris sinica, 2022, 43(1): 154-160.
[3] 周斌珍, 胡俭俭, 谢彬, 等. 风浪联合发电系统水动力学研究进展[J]. 力学学报, 2019, 51(6): 1641-1649.
ZHOU B Z, HU J J, XIE B, et al.Research progress in hydrodynamics of wind-wave combined power generation system[J]. Chinese journal of theoretical and applied mechanics, 2019, 51(6): 1641-1649.
[4] BERNITSAS M M, RAGHAVAN K, BEN-SIMON Y, et al.VIVACE (vortex induced vibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow[J]. Journal of mechanics and arctic engineering, 2008, 130(4): 041101.
[5] 吕艳芳, 李佳冀, 潘思言, 等. 涡激振动发电装置及其关键技术[J]. 装备制造技术, 2020(1): 161-165.
LYU Y F, LI J J, PAN S Y, et al.Vortex induced vibration generator and its key technology[J]. Equipment manufacturing technology, 2020(1): 161-165.
[6] 练继建, 燕翔, 刘昉. 流致振动能量利用的研究现状与展望[J]. 南水北调与水利科技, 2018, 16(1): 176-188.
LIAN J J, YAN X, LIU F.Development and prospect of study on the energy harness of flow-induced motion[J]. South-to-north water transfers and water science & technology, 2018, 16(1): 176-188.
[7] DING L, ZHANG L, BERNITSAS M M, et al.Numerical simulation and experimental validation for energy harvesting of single-cylinder VIVACE converter with passive turbulence control[J]. Renewable energy, 2016, 85: 1246-1259.
[8] 李小超, 徐伟, 周熙林, 等. 涡激振动发电装置水动力及功率特性实验研究[J]. 浙江大学学报(工学版), 2018, 52(7): 1370-1375.
LI X C, XU W, ZHOU X L, et al.Experimental study on hydrodynamic and power characteristics of vortex-induced vibration based power generator[J]. Journal of Zhejiang University(engineering science), 2018, 52(7): 1370-1375.
[9] 王世明, 李淼淼, 李泽宇, 等. 国际潮流能利用技术发展综述[J]. 船舶工程, 2020, 42(S1): 23-28, 487.
WANG S M, LI M M, LI Z Y, et al.Development overview of international tidal energy utilization technology[J]. Ship engineering, 2020, 42(S1): 23-28, 487.
[10] 袁鹏, 陈东旺, 王树杰, 等. 涡激振动潮流能转换装置获能实验研究[J]. 中国海洋大学学报(自然科学版), 2015, 45(10): 114-120.
YUAN P, CHEN D W, WANG S J, et al.Experimental study on vortex-induced vibration tidal current energy conversion[J]. Periodical of Ocean University of China, 2015, 45(10): 114-120.
[11] SUN H Y, WANG J Z, LIN H H, et al.Numerical study on a cylinder vibrator in the hydrodynamics of a wind-wave combined power generation system under different mass ratios[J]. Energies, 2022, 15(24): 9265.
[12] 田辰玲, 刘明月, 王世圣, 等. 张力腿平台涡激运动特性数值模拟与模型试验研究[J]. 中国海上油气, 2021, 33(1): 192-200.
TIAN C L, LIU M Y, WANG S S, et al.Numerical simulation and model test on vortex induced motion characteristics of a TLP[J]. China offshore oil and gas, 2021, 33(1): 192-200.
[13] JAUVTIS N, WILLIAMSON C H K. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[J]. Journal of fluid mechanics, 2004, 509: 23-62.
[14] COUTANCEAU M, DEFAYE J R.Circular cylinder wake configurations: a flow visualization survey[J]. Applied mechanics reviews, 1991, 44(6): 255-305.
[15] 李霖, 张志国, 王先洲, 等. 低雷诺数圆柱绕流的大涡模拟分析[J]. 舰船科学技术, 2013, 35(1): 22-26.
LI L, ZHANG Z G, WANG X Z, et al.Investigation of flow cross cylinder using large eddy simulation at low Re[J]. Ship science and technology, 2013, 35(1): 22-26.
[16] WILLIAMSON C H K, GOVARDHAN R. Vortex-induced vibrations[J]. Annual review of fluid mechanics, 2004, 36(1): 413-455.

基金

国家自然科学基金(51909148)

PDF(2767 KB)

Accesses

Citation

Detail

段落导航
相关文章

/