新型非隔离高升压DC-DC变换器

周晓燕, 权利敏, 李海滨, 张民

太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 239-246.

PDF(3334 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3334 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 239-246. DOI: 10.19912/j.0254-0096.tynxb.2023-1063

新型非隔离高升压DC-DC变换器

  • 周晓燕1, 权利敏1, 李海滨2, 张民1
作者信息 +

NOVEL NON-ISOLATED HIGH BOOST DC-DC CONVERTER

  • Zhou Xiaoyan1, Quan Limin1, Li Haibin2, Zhang Min1
Author information +
文章历史 +

摘要

针对传统Boost升压变换器升压能力不足的问题,提出一种新型非隔离高升压DC-DC变换器,其特点是高电压增益、连续输入电流、开关管和二极管电压应力低、高效率。通过在电路中引入耦合电感,电路可在适当的占空比D下工作,同时通过调节匝数比来保持电压增益。首先对所提变换器的工作状态进行分析,然后推导出元件的电压和电流应力。此外,为了突出所提变换器的性能优势,将其与其他拓扑结构进行比较。最后,通过实验室制作的实验样机验证所提变换器的可行性和有效性。

Abstract

To address the problem of insufficient boost capability of the conventional Boost converter, this paper proposes a novel non-isolated boost DC-DC converter, which features high voltage gain, continuous input current, low voltage stress on the switch and diodes, and high efficiency. By introducing coupled inductors in the circuit, the circuit can operate at a proper duty cycle D while maintaining the voltage gain by adjusting the turn ratio. The paper begins with an analysis of the operating state of the proposed converter. Then the voltage and current stresses of the components are deduced. Furthermore, to highlight the performance advantages of the proposed converter, it is compared with other topologies. Finally, the feasibility and effectiveness of the proposed converter are verified by an experimental prototype fabricated in the laboratory.

关键词

光伏效应 / DC-DC变换器 / 耦合电路 / 效率 / 损耗 / 变压器绕组

Key words

photovoltaic effects / DC-DC converters / coupled circuits / efficiency / losses / transformer windings

引用本文

导出引用
周晓燕, 权利敏, 李海滨, 张民. 新型非隔离高升压DC-DC变换器[J]. 太阳能学报. 2024, 45(11): 239-246 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1063
Zhou Xiaoyan, Quan Limin, Li Haibin, Zhang Min. NOVEL NON-ISOLATED HIGH BOOST DC-DC CONVERTER[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 239-246 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1063
中图分类号: TM464   

参考文献

[1] 张民, 李海滨, 郝杨阳, 等. 一种混合型阻抗源逆变器的研究[J]. 太阳能学报, 2021, 42(11): 27-32.
ZHANG M, LI H B, HAO Y Y, et al.Research on a hybrid impedance source inverter[J]. Acta energiae solaris sinica, 2021, 42(11): 27-32.
[2] ZHANG M, LI H B, HAO Y Y, et al.A modified switched-coupled-inductor quasi-Z-source inverter[J]. IEEE journal of emerging and selected topics in power electronics, 2021, 9(3): 3634-3646.
[3] 张民, 周明珠, 韦正怡, 等. 一种集成Y源网络的高升压DC-DC变换器[J]. 太阳能学报, 2022, 43(10): 499-506.
ZHANG M, ZHOU M Z, WEI Z Y, et al.A Y-source network integrated high voltage step-up DC-DC converter[J]. Acta energiae solaris sinica, 2022, 43(10): 499-506.
[4] 张民, 袁成功, 薛鹏飞, 等. 超高倍压耦合电感Boost变换器[J]. 高电压技术, 2023, 49(3): 1263-1272.
ZHANG M, YUAN C G, XUE P F, et al.Ultra-high voltage coupled inductor Boost converter[J]. High voltage engineering, 2023, 49(3): 1263-1272.
[5] 宋立业, 田国胜, 袁成功, 等. 一种新型超高升压DC-DC变换器的设计[J]. 太阳能学报, 2023, 44(9): 160-168.
SONG L Y, TIAN G S, YUAN C G, et al.Design of novel ultra-high boost DC-DC converter[J]. Acta energiae solaris sinica, 2023, 44(9): 160-168.
[6] 袁成功, 张民, 薛鹏飞, 等. 新型耦合电感高增益DC-DC变换器[J]. 太阳能学报, 2023, 44(4): 448-455.
YUAN C G, ZHANG M, XUE P F, et al.Novel coupled inductor high-gain DC-DC converter[J]. Acta energiae solaris sinica, 2023, 44(4): 448-455.
[7] 傅金洲, 孙鸣. 基于气候条件的光伏储能一体发电系统的能量管理策略[J]. 电力系统保护与控制, 2018, 46(24): 142-149.
FU J Z, SUN M.Energy management strategy based on weather condition for photovoltaic-energy storage integrated power system[J]. Power system protection and control, 2018, 46(24): 142-149.
[8] ZHANG M, XUE P F, YUAN C G, et al.A high step-up, high efficiency, and low switch voltage stress coupled-inductor DC-DC converter with switched-capacitor and coupled-inductor techniques[J]. IEEE journal of emerging and selected topics in power electronics, 2023, 11(2): 2326-2339.
[9] MAALANDISH M, HOSSEINI S H, JALILZADEH T.High step-up DC/DC converter using switch-capacitor techniques and lower losses for renewable energy applications[J]. IET power electronics, 2018, 11(10): 1718-1729.
[10] TARZAMNI H, KOLAHIAN P, SABAHI M.High step-up DC-DC converter with efficient inductive utilization[J]. IEEE transactions on industrial electronics, 2021, 68(5): 3831-3839.
[11] WU B, LI S X, MA SMEDLEY K, et al.A family of two-switch boosting switched-capacitor converters[J]. IEEE transactions on power electronics, 2015, 30(10): 5413-5424.
[12] ZHANG M, WEI Z Y, ZHOU M Z, et al.A high step-up DC-DC converter with switched-capacitor and coupled-inductor techniques[J]. IEEE journal of emerging and selected topics in industrial electronics, 2022, 3(4): 1067-1076.
[13] LOH P C, LI D, BLAABJERG F.Γ-Z-source inverters[J]. IEEE transactions on power electronics, 2013, 28(11): 4880-4884.
[14] CHENG K W E, YE Y M. Duality approach to the study of switched-inductor power converters and its higher-order variations[J]. IET power electronics, 2015, 8(4): 489-496.
[15] FARAKHOR A, ABAPOUR M, SABAHI M.Study on the derivation of the continuous input current high-voltage gain DC/DC converters[J]. IET power electronics, 2018, 11(10): 1652-1660.
[16] POURJAFAR S, SEDAGHATI F, SHAYEGHI H, et al.High step-up DC-DC converter with coupled inductor suitable for renewable applications[J]. IET power electronics, 2019, 12(1): 92-101.
[17] SHARIFI S, MONFARED M.Modified series and tapped switched-coupled-inductors quasi-Z-source networks[J]. IEEE transactions on industrial electronics, 2019, 66(8): 5970-5978.
[18] MO W, LOH P C, BLAABJERG F.Asymmetrical\ Gamma-source inverters[J]. IEEE transactions on industrial electronics, 2014, 61(2): 637-647.
[19] CHEN Y T, LU Z X, LIANG R H, et al.Analysis and implementation of a novel high step-up DC-DC converter with low switch voltage stress and reduced diode voltage stress[J]. IET power electronics, 2016, 9(9): 2003-2012.
[20] HASANPOUR S, BAGHRAMIAN A, MOJALLALI H.A modified SEPIC-based high step-up DC-DC converter with quasi-resonant operation for renewable energy applications[J]. IEEE transactions on industrial electronics, 2019, 66(5): 3539-3549.
[21] MORADPOUR R, ARDI H, TAVAKOLI A.Design and implementation of a new SEPIC-based high step-up DC/DC converter for renewable energy applications[J]. IEEE transactions on industrial electronics, 2018, 65(2): 1290-1297.
[22] ZHENG Y F, SMEDLEY K M.Analysis and design of a single-switch high step-up coupled-inductor boost converter[J]. IEEE transactions on power electronics, 2020, 35(1): 535-545.
[23] SANTOS SPENCER ANDRADE A M, MATTOS E, SCHUCH L, et al. Synthesis and comparative analysis of very high step-up DC-DC converters adopting coupled-inductor and voltage multiplier cells[J]. IEEE transactions on power electronics, 2018, 33(7): 5880-5897.
[24] AI J, LIN M Y.Ultralarge gain step-up coupled-inductor DC-DC converter with an asymmetric voltage multiplier network for a sustainable energy system[J]. IEEE transactions on power electronics, 2017, 32(9): 6896-6903.
[25] ARDI H, AJAMI A.Study on a high voltage gain SEPIC-based DC-DC converter with continuous input current for sustainable energy applications[J]. IEEE transactions on power electronics, 2018, 33(12): 10403-10409.
[26] HASANPOUR S, SIWAKOTI Y P, BLAABJERG F.A new high efficiency high step-up DC/DC converter for renewable energy applications[J]. IEEE transactions on industrial electronics, 2023, 70(2): 1489-1500.
[27] LI H B, LIN J Q, LIN Y Z, et al.A high step-up hybrid Y-source-quasi-Z source DC-DC converter for renewable energy applications[J]. IEEE transactions on industrial electronics, 2024, 71(9): 10681-10692.
[28] DING X P, ZHOU M Z, CAO Y C, et al.A high step-up coupled-inductor-integrated DC-DC multilevel boost converter with continuous input current[J]. IEEE journal of emerging and selected topics in power electronics, 2022, 10(6): 7346-7360.
[29] 胡雪峰. 高增益非隔离型Boost变换器拓扑及其衍生方法研究[D]. 南京: 南京航空航天大学, 2014.
HU X F.Research on topology and generation methodology for high gain non-isolated Boost converters[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.

基金

山东省自然科学基金面上项目(ZR2022ME214);青岛理工大学创新成果培育项目(CLZ2022-035)

PDF(3334 KB)

Accesses

Citation

Detail

段落导航
相关文章

/