利用CFD软件Fluent 16.0,对直叶片H-Darrieus型水轮机模拟计算叶片桨距角为4°、8°、12°、-4°、-8°、-12°的定桨距情况,以及叶片按正弦模式及半正弦模式主动变桨,变桨幅值为4°、8°、12°的情况,重点对比两种桨距策略下水轮机能量利用率。结果表明,与正弦模式变桨水轮机相比,定桨距水轮机在实际应用中更具优势。半正弦模式变桨水轮机能量利用率提升显著,应重视定桨距策略在实际中的应用。
Abstract
In this paper, the CFD software ANSYS Fluent 16.0 is used to simulate a straight-bladed H-Darrieus turbine with preset fixed pitch angle of 4°,8°,12°, -4°,-8° and -12°, respectively, as well as active pitched blades in sinusoidal mode and half-sinusoidal mode, with the pitch amplitude of 4°,8° and 12°, with a focus on comparing the energy efficiency of the turbine under the two pitch strategies. The results show that compared with the sinusoidal-pitch turbine, the fixed-pitch turbine has more advantages in practical applications; the half-sinusoidal-pitch turbine has a significant improvement in energy efficiency; and the application of the fixed-pitch strategy should be emphasized in practical.
关键词
潮流能 /
H-Darrieus水轮机 /
数值模拟 /
自启动 /
定桨距 /
主动变桨
Key words
tidal energy /
H-Darrieus turbine /
numerical simulation /
self-starting /
fixed pitch strategy /
active pitch strategy
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LIU Y X, MA C L, JIANG B.Development and the environmental impact analysis of tidal current energy turbines in China[J]. IOP conference series: earth and environmental science, 2018, 121: 042003.
[2] 杜修茂, 司先才, 袁鹏, 等. 潮流能水轮机转子直径对阵列产能及附近水域的影响研究[J]. 太阳能学报, 2021, 42(11): 442-448.
DU X M, SI X C, YUAN P, et al.Study on influence of rotor diameters of tidal current turbine on array power and adjacent waters[J]. Acta energiae solaris sinica, 2021, 42(11): 442-448.
[3] ZHOU Z B, BENBOUZID M, CHARPENTIER J F, et al.Developments in large marine current turbine technologies: a review[J]. Renewable and sustainable energy reviews, 2017, 71: 852-858.
[4] KIRKE B K, LAZAUSKAS L.Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch[J]. Renewable energy, 2011, 36(3): 893-897.
[5] BOUZAHER M T, GUERIRA B, HADID M.Performance analysis of a vertical axis tidal turbine with flexible blades[J]. Journal of marine science and application, 2017, 16(1): 73-80.
[6] BOUZAHER M T, HADID M.Numerical investigation of a vertical axis tidal turbine with deforming blades[J]. Arabian journal for science and engineering, 2017, 42(5): 2167-2178.
[7] LE T Q, LEE K S, PARK J S, et al.Flow-driven rotor simulation of vertical axis tidal turbines: a comparison of helical and straight blades[J]. International journal of naval architecture and ocean engineering, 2014, 6(2): 257-268.
[8] PONGDUANG S, KAYANKANNAVEE C, TIAPLE Y.Experimental investigation of helical tidal turbine characteristics with different twists[J]. Energy procedia, 2015, 79: 409-414.
[9] WU S, LIU Y J, AN Q.Hydrodynamic analysis of a marine current energy converter for profiling floats[J]. Energies, 2018, 11(9): 2218.
[10] XIE Y, KANG H G, CHEN B, et al.Field test of a coaxial dual rotor vertical axis turbine[J]. Proceedings of the institution of mechanical engineers, part M: journal of engineering for the maritime environment, 2018, 232(2): 253-260.
[11] PRIEGUE L, STOESSER T.The influence of blade roughness on the performance of a vertical axis tidal turbine[J]. International journal of marine energy, 2017, 17: 136-146.
[12] ORME J A C, MASTERS I, GRIFFITHS R T. Investigation of the effect of biofouling on the efficiency of marine current turbines[C]//Proceedings of MAREC2001, International Conference on Marine Renewable Energies, Institute of Marine Engineers, London, 2001: 91-99.
[13] LIANG Y B, ZHANG L X, LI E X, et al.Blade pitch control of straight-bladed vertical axis wind turbine[J]. Journal of Central South University, 2016, 23(5): 1106-1114.
[14] RAWLING G W.Parametric characterization of an experimental vertical axis hydro turbine[D]. Vancouver: University of British Columbia, 2009.
[15] ZHAO G, YANG R S, LIU Y, et al.Hydrodynamic performance of a vertical-axis tidal-current turbine with different preset angles of attack[J]. Journal of hydrodynamics, 2013, 25(2): 280-287.
[16] PAILLARD B, ASTOLFI J A, HAUVILLE F.URANSE simulation of an active variable-pitch cross-flow Darrieus tidal turbine: sinusoidal pitch function investigation[J]. International journal of marine energy, 2015, 11: 9-26.
[17] CHEN B, SU S S, VIOLA I M, et al.Numerical investigation of vertical-axis tidal turbines with sinusoidal pitching blades[J]. Ocean engineering, 2018, 155: 75-87.
[18] 周东海, 孙晓晶. 叶片前缘偏转对H型垂直轴水轮机性能的影响[J]. 太阳能学报, 2022, 43(9): 391-401.
ZHOU D H, SUN X J.Effect of variable droop leading edge on hydrodynamic characteristics of H-type vertical axis hydraulic turbine[J]. Acta energiae solaris sinica, 2022, 43(9): 391-401.
[19] 李凯迪, 周东海, 孙晓晶. 叶片尾缘偏转对升力型垂直轴水轮机性能的影响[J]. 动力工程学报, 2023, 43(1): 83-91, 101.
LI K D, ZHOU D H, SUN X J.Effect of blade trailing edge deflection on performance of a lift-type vertical axis hydraulic turbine[J]. Journal of Chinese Society of Power Engineering, 2023, 43(1): 83-91, 101.
[20] HWANG I S, LEE Y H, KIM S J.Optimization of cycloidal water turbine and the performance improvement by individual blade control[J]. Applied energy, 2009, 86(9): 1532-1540.
[21] 姜劲, 王润玉, 张亮. 摆线式潮流能垂直轴水轮机尾涡模拟[J]. 黑龙江大学自然科学学报, 2018, 35(4): 493-498.
JIANG J, WANG R Y, ZHANG L.Wake simulation of vertical axis cycloidal tidal turbine[J]. Journal of Natural Science of Heilongjiang University, 2018, 35(4): 493-498.
[22] YAGMUR S, KOSE F.Numerical evolution of unsteady wake characteristics of H-type darrieus hydrokinetic turbine for a hydro farm arrangement[J]. Applied ocean research, 2021, 110: 102582.
[23] 赵广, 郭嘉楠, 刘艳, 等. 竖轴潮流能水轮机实验台设计及水动力性能测试[J]. 太阳能学报, 2013, 34(7): 1271-1279.
ZHAO G, GUO J N, LIU Y, et al.Test rig design of vertical axis marine current turbine and testing on hydrodynamic performance[J]. Acta energiae solaris sinica, 2013, 34(7): 1271-1279.
基金
中海石油(中国)有限公司科技课题“海洋能开发利用关键技术”(KJZX-2022-12-XNY-0900)