低速海流能俘能装置阵列优化布置研究

罗竹梅, 李俊, 郭涛, 杨涛, 晁浩诚

太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 561-569.

PDF(3516 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3516 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 561-569. DOI: 10.19912/j.0254-0096.tynxb.2023-1067

低速海流能俘能装置阵列优化布置研究

  • 罗竹梅1, 李俊2, 郭涛3, 杨涛1, 晁浩诚1
作者信息 +

STUDY ON ARRAY OPTIMAL ARRANGEMENT OF ENERGY CAPTURE DEVICE IN LOW VELOCITY OCEAN CURRENT

  • Luo Zhumei1, Li Jun2, Guo Tao3, Yang Tao1, Chao Haocheng1
Author information +
文章历史 +

摘要

以单圆柱能量转换装置俘能数学模型为基础,构建多圆柱涡激振动能量转换数学模型及多个能量转换器阵列优化布局数学模型。为提高阵列优化效率,首次以俘能功率为目标,采用基于遗传算法的分层优化算法对多个俘能装置进行阵列优化布置研究。在4 m×4 m海域内,分别对2、3、4、5、6、8个能量转换装置阵列布置进行优化计算;通过流固耦合数值模拟方法,对3个俘能装置阵列优化结果进行验证,以分析相互作用因子q的变化规律。结果表明:该优化算法可有效优化多圆柱俘能装置阵列布置,优化后的布置增强了阵列中各装置间的相互作用,显著提高了多圆柱涡激振动俘能装置阵列的发电效率。

Abstract

The large-scale deployment of energy converters for harvesting low-velocity ocean current energy by vortex-induced vibration (VIV)is bound to become the inevitable trend to develop low-velocity current energy with large scale. In this study, based on the mathematical model of energy capture of single cylindrical energy conversion device, the mathematical model of energy conversion of multi-cylinder vortex-induced vibration and the mathematical model of optimal layout of multiple energy converter arrays are constructed. In order to improve the array optimization efficiency, aiming at the energy capture power for the first time, the hierarchical optimization algorithm based on genetic algorithm is used to study the optimal layout of multiple energy converters. In the 4 m×4 m sea area, the array arrangements of 2, 3, 4, 5, 6 and 8 energy conversion devices are optimized respectively, and the optimization results of three energy capture devices are verified by fluid-structure interaction numerical simulation method. in order to analyze the variation law of interaction factor q. The results show that the optimization algorithm can effectively optimize the array layout of the multi-cylindrical energy converters, and the optimized arrangement enhances the interaction between the devices in the array and significantly improves the power generation efficiency for the multi-cylindrical energy converter

关键词

海流能 / 涡激振动 / 遗传算法 / 阵列布置 / 流固耦合

Key words

ocean current energy / vortex-induced vibration / genetic algorithm / array arrangement / fluid-structure interaction

引用本文

导出引用
罗竹梅, 李俊, 郭涛, 杨涛, 晁浩诚. 低速海流能俘能装置阵列优化布置研究[J]. 太阳能学报. 2024, 45(11): 561-569 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1067
Luo Zhumei, Li Jun, Guo Tao, Yang Tao, Chao Haocheng. STUDY ON ARRAY OPTIMAL ARRANGEMENT OF ENERGY CAPTURE DEVICE IN LOW VELOCITY OCEAN CURRENT[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 561-569 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1067
中图分类号: TK79   

参考文献

[1] 赵世明, 刘富铀, 张俊海, 等. 我国海洋能开发利用发展战略研究的基本思路[J]. 海洋技术, 2008, 27(3): 80-83.
ZHAO S M, LIU F Y, ZHANG J H, et al.Basic thought of research on China’s ocean energy development and utilization strategy[J]. Ocean technology, 2008, 27(3): 80-83.
[2] KURIQI A, PINHEIRO A N, SORDO-WARD A, et al.Ecological impacts of run-of-river hydropower plants—current status and future prospects on the brink of energy transition[J]. Renewable and sustainable energy reviews, 2021, 142: 110833.
[3] KURIQI A, PINHEIRO A N, SORDO-WARD A, et al.Influence of hydrologically based environmental flow methods on flow alteration and energy production in a run-of-river hydropower plant[J]. Journal of cleaner production, 2019, 232: 1028-1042.
[4] XU W H, WU H K, JIA K, et al.Numerical investigation into the effect of spacing on the flow-induced vibrations of two tandem circular cylinders at subcritical Reynolds numbers[J]. Ocean engineering, 2021, 236: 109521.
[5] ZHAO M, CHENG L.Numerical simulation of vortex-induced vibration of four circular cylinders in a square configuration[J]. Journal of fluids and structures, 2012, 31: 125-140.
[6] WANG E H, XU W H, YU Y, et al.Flow-induced vibrations of three and four long flexible cylinders in tandem arrangement: an experimental study[J]. Ocean engineering, 2019, 178: 170-184.
[7] 邢通亮. 柱群结构风致涡激振动的数值模拟分析与验证[D]. 哈尔滨: 哈尔滨工业大学, 2012: 6-24.
XING T L.Numerical simulation and verification of vortex-induced vibrations for cylinder group[D]. Harbin: Harbin Institute of Technology, 2012: 6-24.
[8] 张晓娜, 及春宁, 陈威霖, 等. 正三角形排列刚性耦合三圆柱涡激振动特性及尾涡模式[J]. 振动与冲击, 2021, 40(12): 132-142.
ZHANG X N, JI C N, CHEN W L, et al.Vortex-induced vibration features and wake modes of three rigidly coupled circular cylinders in equilateral triangular arrangements[J]. Journal of vibration and shock, 2021, 40(12): 132-142.
[9] KIM E S, BERNITSAS M M.Performance prediction of horizontal hydrokinetic energy converter using multiple-cylinder synergy in flow induced motion[J]. Applied energy, 2016, 170: 92-100.
[10] JANOCHA M J, ONG M C, NYSTRØM P R, et al. Flow around two elastically-mounted cylinders with different diameters in tandem and staggered configurations in the subcritical Reynolds number regime[J]. Marine structures, 2021, 76: 102893.
[11] ZHANG D H, SUN H, WANG W H, et al.Rigid cylinder with asymmetric roughness in Flow Induced Vibrations[J]. Ocean engineering, 2018, 150: 363-376.
[12] 杜修茂, 司先才, 袁鹏, 等. 潮流能水轮机转子直径对阵列产能及附近水域的影响研究[J]. 太阳能学报, 2021, 42(11): 442-448.
DU X M, SI X C, YUAN P, et al.Study on influence of rotor diameters of tidal current turbine on array power and adjacent waters[J]. Acta energiae solaris sinica, 2021, 42(11): 442-448.
[13] 马宏达, 邓义斌, 郭强波. 基于遗传算法的二自由度波浪能装置阵列优化[J]. 太阳能学报, 2022, 43(6): 264-269.
MA H D, DENG Y B, GUO Q B.Optimization of 2-DOF wave energy converters array based on genetic algorithm[J]. Acta energiae solaris sinica, 2022, 43(6): 264-269.
[14] SINGH J, BABARIT A.A fast approach coupling boundary element method and plane wave approximation for wave interaction analysis in sparse arrays of wave energy converters[J]. Ocean engineering, 2014, 85: 12-20.
[15] KAGEMOTO H, YUE D K P. Interactions among multiple three-dimensional bodies in water waves: an exact algebraic method[J]. Journal of fluid mechanics, 1986, 166: 189-209.
[16] CHILD B F M, VENUGOPAL V. Optimal configurations of wave energy device arrays[J]. Ocean engineering, 2010, 37(16): 1402-1417.
[17] SHARP C, DUPONT B.Wave energy converter array optimization: a genetic algorithm approach and minimum separation distance study[J]. Ocean engineering, 2018, 163: 148-156.
[18] GIASSI M, GÖTEMAN M. Layout design of wave energy parks by a genetic algorithm[J]. Ocean engineering, 2018, 154: 252-261.
[19] LOUKOGEORGAKI E, MICHAILIDES C, LAVIDAS G, et al.Layout optimization of heaving wave energy converters linear arrays in front of a vertical wall[J]. Renewable energy, 2021, 179: 189-203.
[20] FANG H W, FENG Y Z, LI G P.Optimization of wave energy converter arrays by an improved differential evolution algorithm[J]. Energies, 2018, 11(12): 3522.
[21] 方红伟, 宋如楠, 冯郁竹, 等. 基于差分进化的波浪能转换装置阵列优化[J]. 电工技术学报, 2019, 34(12): 2597-2605.
FANG H W, SONG R N, FENG Y Z, et al.Array optimization of wave energy converters by differential evolution algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2597-2605.
[22] SUMNER D.Two circular cylinders in cross-flow: a review[J]. Journal of fluids and structures, 2010, 26(6): 849-899.

基金

国家自然科学基金(52069010;52369017)

PDF(3516 KB)

Accesses

Citation

Detail

段落导航
相关文章

/