基于改进蜉蝣算法的光伏多峰值最大功率跟踪特性研究

赵智勇, 李卫军, 郑秒, 朱运奇, 张翼

太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 77-84.

PDF(2787 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2787 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (12) : 77-84. DOI: 10.19912/j.0254-0096.tynxb.2023-1069

基于改进蜉蝣算法的光伏多峰值最大功率跟踪特性研究

  • 赵智勇, 李卫军, 郑秒, 朱运奇, 张翼
作者信息 +

RESEARCH ON PHOTOVOLTAIC MULTI-PEAK MAXIMUM POWER TRACKING CHARACTERISTICS BASED ON IMPROVED MAYFLY ALGORITHM

  • Zhao Zhiyong, Li Weijun, Zheng Miao, Zhu Yunqi, Zhang Yi
Author information +
文章历史 +

摘要

使用一种改进蜉蝣算法(EMA)解决在局部阴影条件下,太阳电池P-U图呈现多峰值,传统最大功率点跟踪算法易陷入局部最优解,导致无法快速准确找到光伏最大功率跟踪点的问题。首先通过雄性蜉蝣的全局搜索,跳出局部最优解;然后利用雌性蜉蝣的随机局部搜索和交配,减少系统震荡;最后通过设置两组不同的算例,验证所使用算法的跟踪精度和跟踪速度。研究结果表明:与粒子群算法(PSO)和灰狼算法(GWO)相比,改进蜉蝣算法在搜索过程中可减少光伏输出功率震荡。相较于PSO和GWO,在EWA在跟踪速度上得到显著提升,使得太阳电池在局部阴影下仍能保持高效的输出功率。

Abstract

An improved mayfly algorithm (EMA) is used to solve the problem of multiple peaks in solar ceu P-U graphs under partial shading conditions, where traditional maximum power point tracking (MPPT) algorithms tend to fall into local optimal solution, making it difficult to quickly and accurately find the global maximum power point of the PV system. Firstly, the male mayflies perform a global search to escape local optimal solution. Then, the female mayflies reduce system oscillations through random local search and mating. Finally, two different scenarios are set to verify the tracking accuracy and speed of the proposed algorithm. The results show that compared with particle swarm optimization (PSO) and grey wolf optimization (GWO), the EMA reduces PV output power oscillations during the search process. Compared to PSO and GWO, EMA has significantly improved the tracking speed, allowing the solar cells to maintain high output power even under partial shading.

关键词

光伏发电 / 最大功率点跟踪 / 改进蜉蝣算法 / 局部阴影 / 多峰值 / 光伏输出特性

Key words

PV generation / maximum power point tracking / improved Mayfly algorithm / partial shading / multi-peak / PV output characteristics

引用本文

导出引用
赵智勇, 李卫军, 郑秒, 朱运奇, 张翼. 基于改进蜉蝣算法的光伏多峰值最大功率跟踪特性研究[J]. 太阳能学报. 2024, 45(12): 77-84 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1069
Zhao Zhiyong, Li Weijun, Zheng Miao, Zhu Yunqi, Zhang Yi. RESEARCH ON PHOTOVOLTAIC MULTI-PEAK MAXIMUM POWER TRACKING CHARACTERISTICS BASED ON IMPROVED MAYFLY ALGORITHM[J]. Acta Energiae Solaris Sinica. 2024, 45(12): 77-84 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1069
中图分类号: TM615   

参考文献

[1] 伍浩松, 戴定, 赵畅. 国际能源署发布2050年净零排放路线图[J]. 国外核新闻, 2021(6): 17-22.
WU H S, DAI D, ZHAO C. The International Energy Agency released the road map of net zero emission in2050[J]. Foreign nuclear news, 2021(6): 17-22.
[2] KIM J, HO-BAILLIE A, HUANG S J.Review of novel passivation techniques for efficient and stable perovskite solar cells[J]. Solar RRL, 2019, 3(4): 1800302.
[3] 刘文锋, 李昂. 基于变步长扰动观察法结合改进天牛群优化算法的三步复合光伏最大功率跟踪算法[J]. 热力发电, 2022, 51(10): 138-144.
LIU W F, LI A.Three-step composite photovoltaic MPPT algorithm based on IP & O-IBSO[J]. Thermal power generation, 2022, 51(10): 138-144.
[4] 屠卿瑞, 李一泉, 曾耿晖, 等. 一种基于SQP信赖域算法的光伏单峰MPPT方法: CN107272815B[P].2018-09-11.
TU Q R, LI Y Q, ZENG G H, et al. A kind of SQP-based trust domain computing photovoltaic unimodal MPPT method: CN107272815B[P].2018-09-11.
[5] 林文立, 刘治钢, 马亮. 基于最优梯度法的MPPT全数字控制仿真[J]. 航天器工程, 2013, 22(4): 82-86.
LIN W L, LIU Z G, MA L.Simulation of maximum power point tracking digital control based on optimized gradient method[J]. Spacecraft engineering, 2013, 22(4): 82-86.
[6] 罗嘉, 郭兴众, 吴飞. 基于拟合曲线法和最优梯度法相结合的MPPT算法[J]. 南阳理工学院学报, 2016, 8(2): 27-32.
LUO J, GUO X Z, WU F.MPPT algorithm based on fitting curve method and optimal gradient method[J]. Journal of Nanyang Institute of Technology, 2016, 8(2): 27-32.
[7] 潘海鹏, 李明华, 雷建峰, 等. 基于卡尔曼滤波和改进粒子群的MPPT算法[J]. 轻工机械, 2022, 40(6): 44-51.
PAN H P, LI M H, LEI J F, et al.MPPT algorithm based on Kalman filter and improved particle swarm optimization algorithm[J]. Light industry machinery, 2022, 40(6): 44-51.
[8] 赵梦珏. 基于扰动观察法的光伏MPPT技术的仿真分析[J]. 电工技术, 2022(16): 54-56, 60.
ZHAO M J.Analysis and simulation of photovoltaic MPPT based on disturbance observation method[J]. Electric engineering, 2022(16): 54-56, 60.
[9] 叶国敏, 肖文波, 吴华明. 回归算法与粒子群算法融合算法的光伏系统多峰值MPPT研究[J]. 现代电子技术, 2022, 45(15): 146-150.
YE G M, XIAO W B, WU H M.Research on PV system multi-peak MPPT based on fusion algorithm of regression algorithm and particle swarm optimization algorithm[J]. Modern electronics technique, 2022, 45(15): 146-150.
[10] 付文龙, 孟嘉鑫, 张赟宁, 等. 复杂遮荫下基于改进GWO的光伏多峰MPPT控制[J]. 太阳能学报, 2023, 44(3): 435-442.
FU W L, MENG J X, ZHANG Y N, et al.Photovoltaic multi-peak MPPT control based on improved GWO under complex shade[J]. Acta energiae solaris sinica, 2023, 44(3): 435-442.
[11] 韩思鹏, 蒋晓艳, 罗意, 等. 遮阴条件下光伏MPPT自适应粒子群算法优化[J]. 太阳能学报, 2022, 43(6): 99-105.
HAN S P, JIANG X Y, LUO Y, et al.Photovoltaic MPPT adaptive particle swarm optimization optimization under shading conditions[J]. Acta energiae solaris sinica, 2022, 43(6): 99-105.
[12] 王加健, 帕孜来·马合木提, 孔博龙. 基于改进樽海鞘群算法的光伏系统MPPT研究[J]. 太阳能学报, 2022, 43(4): 191-197.
WANG J J, PAZLAI ·MAHEMUTI, KONG B L.Research on MPPT of photovoltaic system based on improved salp swarm algorithm[J]. Acta energiae solaris sinica, 2022, 43(4): 191-197.
[13] ZERVOUDAKIS K, TSAFARAKIS S.A mayfly optimization algorithm[J]. Computers & industrial engineering, 2020, 145: 106559.
[14] SUHARDI D, SYAFAAH L, IRFAN M, et al.Improvement of maximum power point tracking (MPPT) efficiency using grey wolf optimization (GWO) algorithm in photovoltaic (PV) system[J]. IOP conference series: materials science and engineering, 2019, 674(1): 012038.
[15] 赵泰祥, 廖华, 马逊, 等. 局部阴影下光伏组件的Matlab/Simulink仿真模拟与特性分析[J]. 太阳能学报, 2019, 40(11): 3110-3118.
ZHAO T X, LIAO H, MA X, et al.Matlab/Simulink simulation model and characteristic analysis of PV module under partial shadow[J]. Acta energiae solaris sinica, 2019, 40(11): 3110-3118.
[16] PERVEZ I, SHAMS I, MEKHILEF S, et al.Most valuable player algorithm based maximum power point tracking for a partially shaded PV generation system[J]. IEEE transactions on sustainable energy, 2021, 12(4): 1876-1890.
[17] 颜景斌, 佟尧, 曹雷, 等. 局部阴影条件下光伏电池建模与输出特性仿真[J]. 电源技术, 2018, 42(5): 685-688, 692.
YAN J B, TONG Y, CAO L, et al.Modeling and output characteristics simulation of photovoltaic cells under partial shading condition[J]. Chinese journal of power sources, 2018, 42(5): 685-688, 692.
[18] 洪艳, 潘东方, 姚海峰, 等. 基于黄金分割搜索的光伏阵列最大功率点跟踪方法[J]. 合肥工业大学学报(自然科学版), 2014, 37(4): 416-419.
HONG Y, PAN D F, YAO H F, et al.Method of photovoltaic array maximum power point tracking based on golden section search[J]. Journal of Hefei University of Technology (natural science), 2014, 37(4): 416-419.
[19] MO S X, YE Q T, JIANG K P, et al.An improved MPPT method for photovoltaic systems based on mayfly optimization algorithm[J]. Energy reports, 2022, 8: 141-150.

基金

河南省电力公司2023年科技项目(基于“源-网-荷-储”的多端微电网可靠供电关键技术研究及应用)

PDF(2787 KB)

Accesses

Citation

Detail

段落导航
相关文章

/