SIMULATION STUDY ON PRIMARY FREQUENCY REGULATION OF PUMPED STORAGE UNIT ASSISTED BY FLYWHEEL ENERGY STORAGE
Qiao Tianshu1, Liang Shuangyin1, Guo Peng2, Liang Jingyu3, Liu Yibing1
Author information+
1. Advanced flywheel Energy Storage Technology Research Center of North China Electric Power University, Beijing 102206, China; 2. State Grid Xinyuan Holdings Co.,Ltd. Pumped Storage Technology and Economic Research Institute, Beijing 100053, China; 3. State Grid Beijing Electric Power Company, Beijing 102200, China
This paper presents a simplified frequency calculation model of the generator set, a flywheel energy storage system, and a pumped storage unit model, and the capacity of the flywheel energy storage system is given by mathematical deduction. A simulation experiment is conducted on the frequency characteristics of the regional power grid composed of the above models. The results show that the addition of the flywheel energy storage system improves the frequency regulation performance of the pumped storage unit while reducing the frequent movements of the mechanical components and structures of the pumped storage unit, thereby improving its reliability and service life.
Qiao Tianshu, Liang Shuangyin, Guo Peng, Liang Jingyu, Liu Yibing.
SIMULATION STUDY ON PRIMARY FREQUENCY REGULATION OF PUMPED STORAGE UNIT ASSISTED BY FLYWHEEL ENERGY STORAGE[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 619-626 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1071
中图分类号:
TM74
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 韩冬, 赵增海, 严秉忠, 等. 2021年中国抽水蓄能发展现状与展望[J]. 水力发电, 2022, 48(5): 1-4, 104. HAN D, ZHAO Z H, YAN B Z, et al.Status and prospect of China’s pumped storage development in 2021[J]. Water power, 2022, 48(5): 1-4, 104. [2] 谢小荣, 马宁嘉, 刘威, 等. 新型电力系统中储能应用功能的综述与展望[J]. 中国电机工程学报, 2023, 43(1): 158-169. XIE X R, MA N J, LIU W, et al.Functions of energy storage in renewable energy dominated power systems: review and prospect[J]. Proceedings of the CSEE, 2023, 43(1): 158-169. [3] 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076. CHEN H S, LI H, MA W T, et al.Research progress of energy storage technology in China in 2021[J]. Energy storage science and technology, 2022, 11(3): 1052-1076. [4] 王承民, 孙伟卿, 衣涛, 等. 智能电网中储能技术应用规划及其效益评估方法综述[J]. 中国电机工程学报, 2013, 33(7): 33-41, 21. WANG C M, SUN W Q, YI T, et al.Review on energy storage application planning and benefit evaluation methods in smart grid[J]. Proceedings of the CSEE, 2013, 33(7): 33-41, 21. [5] 梁廷婷, 崔继国. 各种储能方式对比分析及抽水蓄能技术发展趋势探讨[C]//中国水力发电工程学会第二届抽水蓄能技术发展青年论坛暨电网调峰与抽水蓄能专业委员会. 2018年年会论文集. 长沙, 2018: 24-28. LIANG T T, CUI J G.Comparative analysis of various energy storage methods and exploration of the development trend of pumped storage technology[C]//Proceedings of the Second Youth Forum on Pumped Storage Technology Development of China Hydropower Engineering Society and the 2018 Annual Meeting of the Power Grid Peak Shaving and Pumped Storage Professional Committee. Chang sha, 2018: 24-28. [6] 张建成, 黄立培, 陈志业. 飞轮储能系统及其运行控制技术研究[J]. 中国电机工程学报, 2003, 23(3): 108-111. ZHANG J C, HUANG L P, CHEN Z Y.Research on flywheel energy storage system and its controlling technique[J]. Proceedings of the CSEE, 2003, 23(3): 108-111 . [7] 张维煜, 朱熀秋. 飞轮储能关键技术及其发展现状[J]. 电工技术学报, 2011, 26(7): 141-146. ZHANG W Y, ZHU H Q.Key technologies and development status of flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2011, 26(7): 141-146. [8] 戴兴建, 邓占峰, 刘刚, 等. 大容量先进飞轮储能电源技术发展状况[J]. 电工技术学报, 2011, 26(7): 133-140. DAI X J, DENG Z F, LIU G, et al.Review on advanced flywheel energy storage system with large scale[J]. Transactions of China Electrotechnical Society, 2011, 26(7): 133-140. [9] 李建林, 马会萌, 惠东. 储能技术融合分布式可再生能源的现状及发展趋势[J]. 电工技术学报, 2016, 31(14): 1-10,20. LI J L, MA H M, HUI D.Present development condition and trends of energy storage technology in the integration of distributed renewable energy[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 1-10, 20. [10] 周皓, 李军徽, 葛长兴, 等. 改善风电并网电能质量的飞轮储能系统能量管理系统设计[J]. 太阳能学报, 2021, 42(3): 105-113. ZHOU H, LI J H, GE C X, et al.Research on improving power quality of wind power system based on energy management system of flywheel energy storage system[J]. Acta energiae solaris sinica, 2021, 42(3): 105-113. [11] 王育飞, 符杨, 张宇, 等. 风力发电储能系统特性分析与实验研究[J]. 太阳能学报, 2010, 31(11): 1510-1515. WANG Y F, FU Y, ZHANG Y, et al.Characteristics analysis and experimental study of wind power energy storage systems[J]. Acta energiae solaris sinica, 2010, 31(11): 1510-1515. [12] 隋云任, 梁双印, 黄登超, 等. 飞轮储能辅助燃煤机组调频动态过程仿真研究[J]. 中国电机工程学报, 2020, 40(8): 2597-2606. SUI Y R, LIANG S Y, HUANG D C, et al.Simulation study on frequency modulation process of coal burning plants with auxiliary of flywheel energy storage[J]. Proceedings of the CSEE, 2020, 40(8): 2597-2606. [13] 孙春顺, 王耀南, 李欣然. 飞轮辅助的风力发电系统功率和频率综合控制[J]. 中国电机工程学报, 2008, 28(29): 111-116. SUN C S, WANG Y N, LI X R.Synthesized power and frequency control of wind power generation system assisted through flywheels[J]. Proceedings of the CSEE, 2008, 28(29): 111-116. [14] 涂伟超, 李文艳, 张强, 等. 飞轮储能在电力系统的工程应用[J]. 储能科学与技术, 2020, 9(3): 869-877. TU W C, LI W Y, ZHANG Q, et al.Engineering application of flywheel energy storage in power system[J]. Energy storage science and technology, 2020, 9(3): 869-877. [15] 贾宏新, 张宇, 王育飞, 等. 储能技术在风力发电系统中的应用[J]. 可再生能源, 2009, 27(6): 10-15. JIA H X, ZHANG Y, WANG Y F, et al.Energy storage for wind energy applications[J]. Renewable energy resources, 2009, 27(6): 10-15. [16] TARAFT S, REKIOUA D, AOUZELLAG D.Wind power control system associated to the flywheel energy storage system connected to the grid[J]. Energy procedia, 2013, 36: 1147-1157. [17] 张剑云, 李明节. 新能源高渗透的电力系统频率特性分析[J]. 中国电机工程学报, 2020, 40(11): 3498-3507. ZHANG J Y, LI M J.Analysis of the frequency characteristic of the power systems highly penetrated by new energy generation[J]. Proceedings of the CSEE, 2020, 40(11): 3498-3507. [18] 王琦, 郭钰锋, 万杰, 等. 适用于高风电渗透率电力系统的火电机组一次调频策略[J]. 中国电机工程学报, 2018, 38(4): 974-984, 1274. WANG Q,GUO Y F, WAN J, et al.Primary frequency regulation strategy of thermal units for a power system with high penetration wind power[J]. Proceedings of the CSEE, 2018, 38(4): 974-984, 1274. [19] 曾云, 钱晶. 水电机组建模理论[M]. 北京: 中国电力出版社, 2020: 32-40. ZENG Y, QIAN J.Modeling theory of hydropower unit[M]. Beijing: China Electric Power Press, 2020: 32-40. [20] 陈珩. 电力系统稳态分析[M]. 3版. 北京: 中国电力出版社, 2007: 173-218. HEN Y.Steady-state analysis of power system[M]. Beijing: China Electric Power Press, 2007: 173-218. [21] 刘文军, 唐西胜, 周龙, 等. 基于背靠背双PWM变流器的飞轮储能系统并网控制方法研究[J]. 电工技术学报, 2015, 30(16): 120-128. LIU W J, TANG X S, ZHOU L, et al.Research on grid-connected control method for FESS based on back-to-back converter[J]. Transactions of China Electrotechnical Society, 2015, 30(16): 120-128. [22] 丁立, 乔颖, 鲁宗相, 等. 高比例风电对电力系统调频指标影响的定量分析[J]. 电力系统自动化, 2014, 38(14): 1-8. DING L, QIAO Y, LU Z X, et al.Impact on frequency regulation of power system from wind power with high penetration[J]. Automation of electric power systems, 2014, 38(14): 1-8.