为提高糖醇类相变材料(PCM)的直接光热转换与存储性能,促进其在光热储能方面的规模化应用,该文以木糖醇和赤藓糖醇为PCM前驱体,膨胀石墨(EG)为导热添加物,采用机械混合-熔融真空吸附法制备Xy-in-EG(94 ℃)和Er-in-EG(120 ℃)两种不同温区的高导热、高光热转换能力复合PCM,进一步研究所制备复合PCM的光热转换与存储性能。研究结果表明,当EG含量为25%时,两种复合PCM导热系数最大可达到4.39和3.61 W/(m·K),相较于原始PCM提高约一个数量级;当EG含量为15%时,复合PCM的太阳能光谱吸收率分别达到84.3%和86.9%,且复合PCM达到封装稳定状态,加热熔融相变时不存在相分离引起的相变泄露等问题。对复合PCM进行太阳能光热转换与存储实验表明,复合PCM Xy-in-15%EG和Er-in-15%EG光热转换效率相较于商业PCM木糖醇和赤藓糖醇分别提升了63.3%和79.5%,Er-in-15%EG的光热存储速率与商业赤藓糖醇相比提高了3.2倍。
Abstract
To enhance the direct solar-thermal conversion and storage performance of sugar alcohol-based phase change materials (PCMs) and promote their large-scale application in solar thermal energy storage, Xy-in-EG (94 ℃) and Er-in-EG (120 ℃) composite PCMs with high thermal conductivity and excellent light-to-thermal conversion efficiency were prepared using mechanical mixing and melting vacuum adsorption. Xylitol and erythritol served as PCM precursors, while expanded graphite (EG) was used as a thermal conductivity additive. The application of these composite PCMs in solar-thermal direct conversion and storage was systematically investigated. The results show that with 25% EG content, the maximum thermal conductivity of the Xy-in-EG and Er-in-EG composite PCMs reached 4.39 W/(m·K) and 3.61 W/(m·K), respectively, which is approximately an order of magnitude higher than that of the original PCMs. When the EG content was 15%, the solar spectral absorptivity of the composite PCMs reached 84.3% and 86.9%, respectively. At this concentration, the composite PCMs achieved stable encapsulation, without issues such as phase transition leakage caused by phase separation during the heating and melting phase transition processes. Furthermore, in solar-thermal direct conversion and storage experiments, the solar-thermal conversion efficiency of Xy-in-15%EG and Er-in-15%EG composite PCMs increased by~63.3% and 79.5%, respectively, compared to commercial xylitol and erythritol PCMs. The photothermal storage rate of Er-in-15%EG was 3.2 times higher than that of commercial erythritol.
关键词
相变材料 /
导热系数 /
太阳能 /
光热转换 /
热能存储
Key words
phase change materials /
thermal conductivity /
solar energy /
photo-thermal conversion /
thermal energy storage
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LEWIS N S. Research opportunities to advance solar energy utilization[J]. Science, 2016, 351(6271): aad1920.
[2] TIAN Y, ZHAO C Y.A review of solar collectors and thermal energy storage in solar thermal applications[J]. Applied energy, 2013, 104: 538-553.
[3] 闫全英, 王晨羽, 梁高金, 等. 用添加剂强化有机相变材料导热性能的研究[J]. 太阳能学报, 2021, 42(9): 205-209.
YAN Q Y, WANG C Y, LIANG G J, et al.Study on enhancing thermal conductivity of organic phase change materials with additives[J]. Acta energiae solaris sinica, 2021, 42(9): 205-209.
[4] 刘旻瑞, 孙志高, 李成浩, 等. 硬脂酸-十八醇二元复合相变材料性能研究[J]. 太阳能学报, 2019, 40(6): 1553-1559.
LIU M R, SUN Z G, LI C H, et al.Study on properties of stearic acid-stearyl alcohol binary composite phase change materials[J]. Acta energiae solaris sinica, 2019, 40(6): 1553-1559.
[5] 杜文清, 费华, 顾庆军, 等. 癸酸-石蜡二元低共熔复合相变材料的制备及性能研究[J]. 太阳能学报, 2021, 42(7): 251-256.
DU W Q, FEI H, GU Q J, et al.Preparation and properties of capric acid-paraffin binary low eutectic composite phase change materials[J]. Acta energiae solaris sinica, 2021, 42(7): 251-256.
[6] 邵雪峰, 朱子钦, 吴杰, 等. 糖醇及二元共晶混合物的相变储/释热特性[J]. 工程热物理学报, 2019, 40(1):10-16.
SHAO X F, ZHU Z Q, WU J, et al.Phase change heat storage/retrieval performance of sugar alcohols and their binary eutectic mixtures[J]. Journal of engineering thermophysics, 2019, 40(1): 10-16.
[7] 闫晓鑫, 冯妍卉, 邱琳, 等. 赤藓糖醇/碳纳米管复合相变材料热特性模拟研究[J]. 工程科学学报, 2022, 44(4):722-729.
YAN X X, FENG Y H, QIU L, et al.Simulation of thermal properties of erythritol/carbon nanotube composite phase change materials[J]. Chinese journal of engineering, 2022, 44(4): 722-729.
[8] 杨瑜锴, 夏永鹏, 徐芬, 等. 赤藓糖醇相变储热材料研究进展[J]. 化工进展, 2022, 41(8): 4357-4366.
YANG Y K, XIA Y P, XU F, et al.Research progress of erythritol phase change materials for thermal storage[J]. Chemical industry and engineering progress, 2022, 41(8): 4357-4366.
[9] LI M J, LI M J, TONG Z X, et al.Optimization of the packed-bed thermal energy storage with cascaded PCM capsules under the constraint of outlet threshold temperature[J]. Applied thermal engineering, 2021, 186(5): 116473.
[10] YUAN F, LI M J, QIU Y, et al.Specific heat capacity improvement of molten salt for solar energy applications using charged single-walled carbon nanotubes[J]. Applied energy, 2019, 250: 1481-1490.
[11] 罗凯, 叶伟梁, 王艳, 等. 太阳能生活热水系统相变储能研究进展[J]. 太阳能学报, 2022, 43(5): 220-229.
LUO K, YE W L, WANG Y, et al.Research progress of phase change energy storage in solar domestic hot water system[J]. Acta energiae solaris sinica, 2022, 43(5): 220-229.
[12] TAO P, CHANG C, TONG Z, et al.Magnetically-accelerated large-capacity solar-thermal energy storage within high-temperature phase-change materials[J]. Energy & environmental science, 2019, 12(5): 1613-1621.
[13] ZHANG P F, QIU Y, YE C, et al.Anisotropically conductive phase change composites enabled by aligned continuous carbon fibers for full-spectrum solar thermal energy harvesting[J]. Chemical engineering journal, 2023, 461: 141940.
[14] ZHOU H, LV L Q, ZHANG Y Z, et al.Preparation and characterization of a shape-stable xylitol/expanded graphite composite phase change material for thermal energy storage[J]. Solar energy materials and solar cells, 2021, 230: 111244.
[15] YUAN M D, REN Y X, XU C, et al.Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage[J]. Renewable energy, 2019, 136: 211-222.
[16] LU B H, ZHANG Y X, SUN D, et al.Experimental investigation on thermal properties of paraffin/expanded graphite composite material for low temperature thermal energy storage[J]. Renewable energy, 2021, 178: 669-678.
[17] GAO L H, ZHAO J, AN Q S, et al.Experiments on thermal performance of erythritol/expanded graphite in a direct contact thermal energy storage container[J]. Applied thermal engineering, 2017, 113: 858-866.
[18] ZENG J L, GAN J, ZHU F R, et al.Tetradecanol/expanded graphite composite form-stable phase change material for thermal energy storage[J]. Solar energy materials and solar cells, 2014, 127: 122-128.
[19] LEE S Y, SHIN H K, PARK M, et al.Thermal characterization of erythritol/expanded graphite composites for high thermal storage capacity[J]. Carbon, 2014, 68: 67-72.
[20] OYA T, NOMURA T, TSUBOTA M, et al.Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles[J]. Applied Thermal Engineering, 2013, 61(2): 825-828.
[21] ZHANG Q, LUO Z L, GUO Q L, et al.Preparation and thermal properties of short carbon fibers/erythritol phase change materials[J]. Energy conversion and management, 2017, 136: 220-228.
[22] KHOLMANOV I, KIM J, OU E, et al.Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials[J]. ACS nano, 2015, 9(12): 11699-11707.
基金
国家自然科学基金(52293413;52076161)