该文采用转捩模型,首先从平板,然后到NREL PhaseⅥ风力机,对反向、同向涡流发生器(VG)的作用机理进行分析。平板研究旨在从机理上给出同向与反向VG在不同入流风向下的作用机理。通过分析不同转速下的Phase Ⅵ 风力机叶片各剖面流场和输出转矩,来探究三维旋转效应(TDRE)作用下VGs安装方式的影响以及同向VGs的作用机理。模拟结果与NREL试验数据进行对比验证,输出转矩计算结果与试验值吻合良好,最大误差为9.3%。平板研究结果表明,大斜角入流条件下,反向旋转VG作用机理向同向VG方向发展,其扰动作用劣于同向VG。风力机研究结果表明,VG提高了叶片的输出功率,推后了翼型表面的分离点,改善了叶片表面气动流场;TDRE影响下,同向VG的作用效果优于反向VGs。
Abstract
We employed the transition model to examine both counter-rotational (Cot) and co-rotational (Co) VGs, initially focusing on a plane before analyzing the NREL Phase Ⅵ wind turbine. The plane-based VG study aimed to understand Cot-and Co-VGs behavior under large inflow angles. Analyzing the flow field across sections and the output torque at varying wind speeds, we explored the VGs installation impacts under TDRE. The simulation findings were juxtaposed with NREL test data, confirming that our calculations align well with experimental values, with a peak torque error of 9.3%. Results from the plane study indicated that Cot-VGs’behavior starts resembling that of Co-VGs, with the former displaying reduced efficiency at extensive inflow angles. Findings from the wind turbine study revealed that VGs enhance blade output power and delay the airfoil surface’s separation point, particularly prominent at the leading edge. With the wind turbine’s TDRE in play, Co-VGs demonstrate superior performance over Cot-VGs.
关键词
风力机 /
数值模拟 /
流动控制 /
同向涡流发生器 /
Phase Ⅵ风力机 /
旋转效应
Key words
wind turbines /
numerical simulation /
flow control /
co-rotational vortex generators /
phase Ⅵ wind turbine /
rotational effect
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ARAMENDIA I, FERNANDEZ-GAMIZ U, RAMOS-HERNANZ J A, et al. Flow control devices for wind turbines[M]//BIZON N, MAHDAVI TABATABAEI N, BLAABJERG F, et al. Energy Harvesting and Energy Efficiency. Cham: Springer, 2017: 629-655.
[2] 冯俊鑫, 赵振宙, 刘惠文, 等. 涡流发生器形状对DU91-W2-250翼型动态失速的影响机理分析[J]. 太阳能学报, 2022, 43(12): 368-374.
FENG J X, ZHAO Z Z, LIU H W, et al.Analysis of influence machism of vgs shape parameters on dynamic stall of DU91-W2-250 airfoil[J]. Acta energiae solaris sinica, 2022, 43(12): 368-374.
[3] 江瑞芳, 赵振宙, 王同光, 等. 涡流发生器弦向位置对翼型动态失速的影响机理[J]. 太阳能学报, 2022, 43(11): 253-258.
JIANG R F, ZHAO Z Z, WANG T G, et al.Influence of vortex generators chord position on airfoil dynamic stall[J]. Acta energiae solaris sinica, 2022, 43(11): 253-258.
[4] 张磊, 杨科, 徐建中. 涡流发生器对风力机专用翼型气动特性的影响[J]. 工程热物理学报, 2010, 31(5): 749-752.
ZHANG L, YANG K, XU J Z.Effects on wind turbine airfoils by vortex generators[J]. Journal of engineering thermophysics, 2010, 31(5): 749-752.
[5] YANG K, ZHANG L, XU J Z.Simulation of aerodynamic performance affected by vortex generators on blunt trailing-edge airfoils[J]. Science in China series E: technological sciences, 2010, 53(1): 1-7.
[6] GAO L Y, ZHANG H, LIU Y Q, et al., Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines[J]. Renewable energy, 2015, 76: 303-311.
[7] BALDACCHINO D, FERREIRA C, DE TAVERNIER D, et al.Experimental parameter study for passive vortex generators on a 30% thick airfoil[J]. Wind energy, 2018, 21(9): 745-765.
[8] WANG H P, ZHANG B, QIU Q G, et al.Flow control on the NREL S809 wind turbine airfoil using vortex generators[J]. Energy, 2017, 118: 1210-1221.
[9] ZHU C Y, CHEN J, WU J H, et al.Dynamic stall control of the wind turbine airfoil via single-row and double-row passive vortex generators[J]. Energy, 2019, 189: 116272.
[10] ZHU C Y, WANG T G, CHEN J, et al.Effect of single-row and double-row passive vortex generators on the deep dynamic stall of a wind turbine airfoil[J]. Energies, 2020, 13(10): 2535.
[11] ZHAO Z Z, LI T., WANG T G, et al., Numerical investigation on wind turbine vortex generators employing transition models[J]. Journal of renewable and sustainable energy, 2015, 7(6): 1-19.
[12] SAENZ-AGUIRRE A, FERNANDEZ-GAMIZ U, ZULUETA E, et al.Flow control based 5 MW wind turbine enhanced energy production for hydrogen generation cost reduction[J]. International journal of hydrogen energy, 2022, 47(11): 7049-7061.
[13] TIAN Q, CORSON D, BAKER J P.Application of vortex generators to wind turbine blades[C]//34th Wind Energy Symposium. San Diego, California, USA, 2016: 0518.
[14] LEE H M, KWON O J.Numerical simulation of horizontal axis wind turbines with vortex generators[J]. International journal of aeronautical and space sciences, 2019, 20(2): 325-334.
[15] JOHANSEN J., SØRENSEN N.N., RECK M., et al., Rotor blade computation with 3D vortex generators[R]. Risø National Laboratory, Riso-R-1486, Rlskilde Denmark, 2005.
[16] GODARD G, STANISLAS M.Control of a decelerating boundary layer Part 1: optimization of passive vortex generators[J]. Aerospace science and technology, 2006, 10(3): 181-191.
[17] MENTER F R, LANGTRY R B, LIKKI S R, et al.A correlation based transition model using localvariables-part I: model formulation[C]//Proceedings of 2004 ASME TurboExpo. Vienna, Austria: ASME, 2004.
[18] PAULEY W R, EATON J K.Experimental study of the development of longitudinal vortex pairs embedded in a turbulent boundary layer[J]. AIAA journal, 1988, 26(7): 816-823.
[19] HAND M M, SIMMS D A, FINGERSH L J, et al.Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns[R]. National Renewable Energy Lab., Golden, CO.(US), 2001.
基金
国家自然科学基金(51876054;52106239;52376179)