光伏组件切片技术是提升组件功率的一种有效方法,但结构的变化给研究复杂场景下光伏组件输出性能的建模带来一定的难度。该文提出一种阴影遮挡场景下三分片光伏组件性能模拟的方法,该方法以单太阳电池为基础,结合等效电路的串并联结构,对阴影遮挡场景下三分片组件的输出性能进行模拟,最后采用不同遮光实验来验证算法的准确性。通过模型计算功率与实测值对比,三分片组件5参数的最大误差为2.68%,最小误差为0.51%;三分片组件遮阴失配模型中最大功率点的最大功率误差为3.34%,最小误差为1.02%,证明该方法具有较高的精度。此外,该文还对三分片组件在不同遮挡场景下的输出性能进行对比研究,结果表明:三分片串并联的电路结构能使组件在局部阴影遮挡情况下获得更高的输出,三分片组件抗阴影遮挡性能更优。
Abstract
PV module slicing technology is an effective method to enhance the module power, but the variation of structure makes it difficult to study the modeling of PV module output performance under complex scenarios. A method to simulate the performance of three-slice PV modules under shadow shading scenarios is proposed. The method is based on a single cell and combines the series-parallel structure of the equivalent circuit to simulate the output performance of three-slice modules under shadow shading scenarios, and finally different shading experiments are used to verify the accuracy of the algorithm. By comparing the calculated power of the model with the measured value, the maximum error of the five parameters of the three sliced PV modules is 2.68% and the minimum error is 0.51%; the maximum error of the maximum power point power in the shading mismatch model of the three sliced module is 3.34% and the minimum error is 1.02%, which proves that the method has high accuracy. In addition, a comparative study on the output performance of the three-split module under different shading scenarios is conducted, and the results show that the circuit structure of three sliced series-parallel connection can enable the module to obtain higher output under local shading shading situation, and the three sliced PV module has better performance of shading resistance.
关键词
光伏组件 /
发电量仿真 /
失配损失 /
阴影遮挡 /
切片组件
Key words
PV modules /
power generation simulation /
mismatch /
shading /
sliced PV modules
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 姚玉璧, 郑绍忠, 杨扬, 等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报, 2022, 43(10): 524-535.
YAO Y B, ZHENG S Z, YANG Y, et al.Progress and prospects on solar energy resource evaluation and utilization efficiency in China[J]. Acta energiae solaris sinica, 2022, 43(10): 524-535.
[2] 陈晓达, 裴会川, 庄天奇, 等. 光伏组件尺寸与标准化研究[J]. 信息技术与标准化, 2021 (12): 30-36.
CHEN X D, PEI H C, ZHUANG T Q, et al.Research of PV module dimensions and standardization[J]. Information technology and standardization, 2021 (12): 30-36.
[3] 荣丹丹, 蒋京娜, 倪健雄, 等. 半片电池技术在光伏组件中的应用[J]. 新能源进展, 2017, 5(4): 255-258.
RONG D D, JIANG J N, NI J X, et al.Application of halved cells in PV module[J]. Advances in new and renewable energy,2017, 5(4): 255-258.
[4] 陈雨. 光伏组件封装功率损失的研究[D]. 苏州: 苏州大学, 2019.
CHEN Y.Study on power loss of photovoltaic module during encapsulation process[D]. Suzhou: Suzhou University, 2019.
[5] CHOWDHURY S, CHO E C, CHO Y, et al.Analysis of cell to module loss factor for shingled PV module[J]. New & renewable energy, 2020, 16(3): 1-12.
[6] 白建波. 太阳能光伏系统建模、仿真与优化[M]. 北京: 电子工业出版社, 2014: 30-36.
BAI J B.Modeling, simulation and optimization of solar photovoltaic system[M]. Beijing: Publishing House of Electronics Industry, 2014: 30-36.
[7] QIAN J D, CLEMENT C E, ERNST M, et al.Analysis of hotspots in half cell modules undetected by current test standards[J]. IEEE journal of photovoltaics, 2019, 9(3): 842-848.
[8] YANG Z W, LIAO K L, CHEN J, et al.Output performance analysis and power optimization of different configurations half-cell modules under partial shading[J]. Optik, 2021, 232: 166499.
[9] HANIFI H, DASSLER D, TUREK M, et al.Evaluation and comparison of PV modules with different designs of partial cells in desert and moderate climates[J]. IEEE journal of photovoltaics, 2018, 8(5): 1266-1273.
[10] MÜLLER J, HINKEN D, BLANKEMEYER S, et al. Resistive power loss analysis of PV modules made from halved 15.6 × 15.6 cm2 silicon PERC solar cells with efficiencies up to 20.0%[J]. IEEE journal of photovoltaics, 2015, 5(1): 189-194.
[11] SABZALI A J, ISMAIL E H, BEHBEHANI H M.High voltage step-up integrated double Boost-Sepic DC-DC converter for fuel-cell and photovoltaic applications[J]. Renewable energy, 2015, 82: 44-53.
[12] 李善寿, 张兴, 谢东, 等. 阴影条件下光伏组件旁路二极管优化配置研究[J]. 太阳能学报, 2013, 34(10): 1768-1774.
LI S S, ZHANG X, XIE D, et al.Research on optimal configurations of bypass diodes in PV module under shading conditions[J]. Acta energiae solaris sinica, 2013, 34(10): 1768-1774.
[13] 白建波, 曹阳, 郝玉哲, 等. 光伏并网电站仿真与决策优化软件设计[J]. 太阳能学报, 2014, 35(10): 2022-2029.
BAI J B, CAO Y, HAO Y Z, et al.Development of simulation and decision-making software of solar PV grid-connected power system[J]. Acta energiae solaris sinica, 2014, 35(10): 2022-2029.
[14] GUO S, SINGH J P, PETERS I M, et al.A quantitative analysis of photovoltaic modules using halved cells[J]. International journal of photoenergy, 2013, 2013: 739374.
[15] 白建波, 曹阳, 刘升, 等. 一种光伏组件输出特性的判断方法: CN103944510A[P].2014-07-23.
BAI J B, CAO Y, LIU S,et al. A method for judging the output characteristics of photovoltaic modules: CN103944510A[P].2014-07-23.
基金
国家重点研发计划(2022YFB4201000);国家自然科学基金(51676063)