基于轻量化YOLOv5s的光伏热斑检测定位方法

孙海蓉, 刘永朋, 周黎辉

太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 282-288.

PDF(2796 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2796 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (11) : 282-288. DOI: 10.19912/j.0254-0096.tynxb.2023-1110

基于轻量化YOLOv5s的光伏热斑检测定位方法

  • 孙海蓉1, 刘永朋1,2, 周黎辉3
作者信息 +

PHOTOVOLTAIC HOT SPOT DETECTION AND POSITIONING METHOD BASED ON LIGHTWEIGHT YOLOv5s

  • Sun Hairong1, Liu Yongpeng1,2, Zhou Lihui3
Author information +
文章历史 +

摘要

针对目前目标检测技术在检测光伏热斑效应时模型检测速度低、计算复杂、模型结构复杂等问题,提出基于轻量化YOLOv5s的光伏热斑检测定位方法。首先,以YOLOv5s为基础模型,引入轻量网络ShuffleNetV2改进YOLOv5s的主干网络,利用其分组卷积和通道混洗的设计思想,减少模型参数和计算量,同时保持较高的准确率。其次,引入轻量级卷积GSConv优化YOLOv5s的Neck部分,利用其深度可分离卷积结合标准卷积的形式,降低计算复杂度,优化整体模型。最后利用数据集进行验证。结果表明,轻量化后的模型在保证较高精度的前提下,能够提高检测速度、减少参数量和计算量。

Abstract

A lightweight YOLOv5s based photovoltaic hot spot detection and localization method is proposed to address the issues of low model detection speed, complex computation, and complex model structure in current target detection technologies for detecting photovoltaic hot spot effects. Firstly, based on the YOLOv5s model, the lightweight network ShuffleNetV2 is introduced to improve the backbone network of YOLOv5s. By utilizing its design ideas of group convolution and channel shuffling, the model parameters and computational complexity are reduced while maintaining high accuracy. Secondly, introducing lightweight convolution GSConv to optimize the Neck part of YOLOv5s, utilizing its deep separable convolution combined with standard convolution to reduce computational complexity and optimize the overall model. Finally, use the dataset for validation. The results indicate that the lightweight model can improve detection speed, reduce parameter and computational complexity while ensuring high accuracy.

关键词

光伏组件 / 特征提取 / 红外热图像 / 图像识别 / 热斑检测 / YOLOv5

Key words

PV modules / feature extraction / infrared thermal imaging / image recognition / hot spot detection / YOLOv5

引用本文

导出引用
孙海蓉, 刘永朋, 周黎辉. 基于轻量化YOLOv5s的光伏热斑检测定位方法[J]. 太阳能学报. 2024, 45(11): 282-288 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1110
Sun Hairong, Liu Yongpeng, Zhou Lihui. PHOTOVOLTAIC HOT SPOT DETECTION AND POSITIONING METHOD BASED ON LIGHTWEIGHT YOLOv5s[J]. Acta Energiae Solaris Sinica. 2024, 45(11): 282-288 https://doi.org/10.19912/j.0254-0096.tynxb.2023-1110
中图分类号: TM914.4   

参考文献

[1] KUMARI A, SHEKHAR A, KUMAR M S.An artificial neural network-based fault detection technique for PV array[C]// 2022 IEEE International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET), Patna, India, 2022.
[2] 孙海蓉, 李号. 基于深度迁移学习的小样本光伏热斑识别方法[J]. 太阳能学报, 2022, 43(1): 406-411.
SUN H R, LI H.Photovoltaic hot spot identification method for small sample based on deep transfer learning[J]. Acta energiae solaris sinica, 2022, 43(1): 406-411.
[3] 孙海蓉, 李帆. 基于注意力机制的光伏热斑识别[J]. 太阳能学报, 2023, 44(2): 453-459.
SUN H R, LI H.Photovoltaic hot spot recognition based on attention mechanism[J]. Acta energiae solaris sinica, 2023, 44(2): 453-459.
[4] 郭梦浩, 徐红伟. 基于Faster RCNN的红外热图像热斑缺陷检测研究[J]. 计算机系统应用, 2019, 28(11): 265-270.
GUO M H, XU H W.Hot spot defect detection based on infrared thermal image and Faster RCNN[J]. Computer systems & applications, 2019, 28(11): 265-270.
[5] 王道累, 李明山, 姚勇, 等. 改进SSD的光伏组件热斑缺陷检测方法[J]. 太阳能学报, 2023, 44(4): 420-425.
WANG D L, LI M S, YAO Y, et al.Method of hotspot detection of photovoltaic panels modules on improved SSD[J]. Acta energiae solaris sinica, 2023, 44(4): 420-425.
[6] KATYAL S, KUMAR S, SAKHUJA R, et al.Object detection in foggy conditions by fusion of saliency map and YOLO[C]// 2018 12th International Conference on Sensing Technology(ICST). Limerick, Ireland, 2018.
[7] 孙建波, 王丽杰, 麻吉辉, 等. 基于改进YOLOv5s算法的光伏组件故障检测[J]. 红外技术, 2023, 45(2): 202-208.
SUN J B, WANG L J, MA J H, et al.Photovoltaic module fault detection based on improved YOLOv5s algorithm[J]. Infrared technology, 2023, 45(2): 202-208.
[8] MA N, ZHANG X, ZHENG H T, et al.Shufflenetv2:Practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision(ECCV). Munich, Germany, 2018.
[9] 彭红星, 何慧君, 高宗梅, 等. 基于改进ShuffleNetV2模型的荔枝病虫害识别方法[J]. 农业机械学报, 2022, 53(12): 290-300.
PENG H X, HE H J, GAO Z M, et al.Litchi disease and insect pests identification method based on improved ShuffleNetV2[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(12): 290-300.
[10] GAMBHIR R, BHARDWAJ S, KUMAR A, et al.Severity classification of diabetic retinopathy using shufflenet[C]// 2021 International Conference on Intelligent Technologies(CONIT), Hubli, India, 2021 .
[11] 赵军. 基于深度学习的小样本图像分类方法研究[D]. 西安: 长安大学, 2021.
ZHAO J.Research on few shot image classification method based on deep learning[D]. Xi’an: Chang’an University, 2021.
[12] LI H L, LI J, WEI H B, et al.Slim-neck by GSConv: a better design paradigm of the detector architectures for autonomous vehicles[EB/OL]. http://doi.org/10.48550/arxiv.2206.0242, ArXiv: 2206. 02424(2022).
[13] 冒国韬. 城市道路典型复杂场景下车辆检测方法研究[D]. 重庆: 重庆交通大学, 2022.
MAO G T.Research on vehicle detection method in typical complex scenes of urban road[D]. Chongqing: Chongqing Jiaotong University, 2022.

基金

河北省省级科技计划(22567643H)

PDF(2796 KB)

Accesses

Citation

Detail

段落导航
相关文章

/